
www.manaraa.com

Master Thesis

Department of Informatics

Faculty of Mathematics and Natural Sciences

University of Oslo

Model-based Secure Software Engineering

using UMLsec applied to Assisted Living and

Home Care

by

Kudakwashe Kidwell Chambwe
kudakwac@student.matnat.uio.no

Under the supervision of

Christian Johansen
&

Olaf Owe

2018

www.manaraa.com

www.manaraa.com

Abstract

With the emergence of Internet of Things (IoT), there is a growing number of interconnected
devices being developed with concerning security vulnerabilities. Consequently we are experi-
encing attacks and breaches that are capable of doing significant damage. Moreover security
can often be difficult to properly enforce, consume time and result in higher development costs,
we shall propose and examine the UMLsec approach. The approach is aimed at improving the
development of secure systems. Meanwhile, new technologies and methods and approaches
for developing systems like the ThingML are surfacing, that are aimed at being cost-effective,
less time-consuming and increase the productivity. Therefore the aim of this thesis to bridge
these two approaches and address the security challenges we face today.

We introduce the concept of Model-Driven Secure Software Engineering (MDSSE) for speci-
fying and enforcing security requirements at UML design in order to enforce established rules
of prudent security engineering early in the software development process. We define a pro-
cess of defining and constructing a UML profile, using the provided extension mechanisms to
extend the UML metalanguage with security concepts and well-formedness rules by [Jürjens,
2005] and UMLsec. To demonstrate and validate the approach, we define and propose the
ThingMLsec profile which extends the security concepts and threat model of UMLsec for the
domain of IoT systems. This approach and demonstration is supported by the Eclipse-based
UML2 modeling tool Papyrus and related extensions.

In order to demonstrate and validate our ThingMLsec profile, the use case and scenario of
Assisted Living and Community Care is provided by the project Secure COnnected Trustable
Things (SCOTT). We show that this highly expressive, effective and applicable approach,
combined with a wide variety of proficient tools can help system engineers, developers and de-
signers to specify and automatically verify security requirements in developing for the Internet
of Things or any other domain.

www.manaraa.com

Until lambs become lions...

www.manaraa.com

Acknowledgments

I would like to take this opportunity to express my eternal gratitude to everyone who have
supported me. Not only throughout the course of this thesis, but during the course of my

Masters degree.

I am deeply grateful to my main supervisor Christian Johansen. This thesis would not be
possible without your guidance and direction. I would also like to acknowledge my second

supervisor Olaf Owe, for your valuable and insightful comments on this thesis.

Finally, I would like to thank my family and friends. Specifically my loving mother and
stepfather, for encouraging, supporting and believing in me. Thank you so much.

With warm regards,

Kudakwashe K. Chambwe

www.manaraa.com

Contents

List of Figures vi

List of Tables vii

List of Acronyms ix

I Introduction 1

1 Introduction 2
1.1 Motivation . 2
1.2 Problem Formulation . 4
1.3 Contributions . 5
1.4 The Internet of Things . 6

1.4.1 Device-to-Device Communication for Internet of Things 6
1.4.2 Use Case Application of Internet of Things 8
1.4.3 Why the Use Case of Assisted Living? 8
1.4.4 The Goal . 10
1.4.5 Developing for Internet of Things . 10

1.5 Model-Driven Software Engineering . 11
1.5.1 UML . 11
1.5.2 ThingML . 12

1.6 Model-Based Security Engineering . 13
1.6.1 UMLsec . 13

1.7 Related Approaches . 14
1.7.1 Alternatives . 15

1.8 Outline . 17

II Background 20

2 ThingML 21
2.1 Structure of ThingML . 21

2.1.1 Thing(s) . 22
2.1.2 Configurations . 23

iii

www.manaraa.com

CONTENTS iv

3 UMLsec 25
3.1 Security Engineering . 25
3.2 UML Extension Mechanisms . 26

3.2.1 UMLsec Stereotypes . 26
3.3 Security Analysis & Adversary Model . 28

3.3.1 5G Security . 31
3.3.2 BLE Security . 32
3.3.3 Conclusion . 33

III Design 34

4 UML Profile Extension 35
4.1 Background . 35

4.1.1 UML Profiling . 35
4.2 Well-formedness Rules of UMLsec . 36

4.2.1 Base Class . 37
4.2.2 Stereotypes, Tags & Constraints . 39

4.3 Conclusion . 48
4.3.1 Diagrams & Model Elements . 48

5 UMLsec Profile Construction 53
5.1 Tool Support . 53

5.1.1 Papyrus . 55
5.1.2 Alternatives . 55
5.1.3 Conclusion . 56

5.2 ThingMLsec Profile . 57
5.2.1 OCL . 58

IV Application 61

6 The Application of ThingMLsec to ALCCS 62
6.1 Proof of Concept . 62
6.2 Use Case Description . 62

6.2.1 Emergency Handling . 63
6.3 Structural View . 66

6.3.1 Deployment Diagram . 66
6.3.2 Class Diagram . 68

6.4 Behavioral View . 70
6.4.1 Use Case Diagram . 70
6.4.2 Activity Diagram . 71

V Discussion 78

7 Conclusion 79
7.1 Summary . 79

www.manaraa.com

CONTENTS v

7.2 Limitations . 80
7.2.1 Restricted Palette Customization . 80
7.2.2 Lack of OCL Constraints . 82

7.3 Discussion . 83
7.3.1 Usability . 83
7.3.2 Applicability . 85
7.3.3 Integration . 86

7.4 Final Conclusions . 87

8 Future Work 90
8.1 Model-Driven Security Development with ThingML 90
8.2 Privacy and the Internet of Things . 91

8.2.1 Privacy Enhancing Technologies . 91
8.2.2 Privacy Laws and Regulations . 92
8.2.3 Privacy Enforcing Stereotypes . 93

Bibliography 94

www.manaraa.com

List of Figures

1.1 D2D Communication with Device Controlled Link Establishment 7
1.1 Model-Based Development . 11
1.1 Model-Based Security Engineering [Best et al., 2007] 13
1.1 Structure and Outline of the Thesis . 18

2.1 Overall structure of the ThingML DSML [Harrand et al., 2016] 22

4.1 Stereotypes, tags and constraints in UMLsec [Jürjens, 2005, p. 51] 37
4.2 Tags in UMLsec [Jürjens, 2005, p. 52] . 39
4.3 Example of «secure links» usage . 44
4.4 Example of valid «secure links» usage . 44
4.5 Example of «secure dependency» usage . 45
4.6 Example of valid «secure dependency» usage 46
4.1 Categories of UML 2.0 Diagram Types. [Nishadha, 2012] 49

5.1 The Complete ThingMLsec Profile . 54
5.1 ThingMLsec OCL Profile Constraint . 59

6.1 Emergency Handling Use Case [Harrand et al., 2016] 63
6.1 Stereotypes for Deployment Diagrams . 66
6.4 Stereotypes for Class Diagrams . 68
6.1 Stereotypes for Use Case Diagrams . 70
6.2 ThingMLsec Use Case Diagram of ALCCS . 71
6.3 Stereotypes for Activity Diagrams . 72
6.4 ThingMLsec stereotyped Activity Diagram for ALCCS 72
6.2 ThingMLsec Deployment Diagram of ALCCS 75
6.3 ThingMLsec Class Diagram of ALCCS . 76
6.5 Activity Diagram of ALCCS’s "Call for Help" Scenario 77

7.1 Activity Diagram Palette in Papyrus . 80
7.2 A snippet of the .uml file . 81

vi

www.manaraa.com

List of Tables

1.1 Comparison of the related approaches . 17

3.1 Threats from the default attacker . 30
3.2 Threats from the insider attacker . 31
3.3 Encryption-related levels of BLE Security Mode 1 32
3.4 Data-signing-related levels of BLE Security Mode 2 32
3.5 Threats from the defaultIoT attacker for ThingMLsec 33

4.1 Associated tags for «fair exchange» . 40
4.2 Associated tags for «provable» . 40
4.3 Associated tags for «rbac» . 41
4.4 Associated tags for «critical» . 42
4.5 Associated tags for «secure links» . 43
4.6 Associated tags for «data security» . 48
4.7 Associated tags for «guarded» . 48
4.1 ThingMLsec Stereotypes and UML 2.0 Diagrams 50

5.1 Requirements for the selection of UML tool . 55
5.2 Comparison of UML tools . 57

6.1 Use Case Scenario 1 Description, WP21 ALCCS 65

vii

www.manaraa.com

List of Acronyms

ALCCS Assisted Living and Community Care System. 3, 5, 8–10, 18, 62, 66, 68–72, 79

API Application Programming Interface. 23

BLE Bluetooth Low Energy. 8, 9, 31, 32

BTL Binary Temporal Logic. 84

D2D Device-to-Device. 6–8, 31

DAC Discretionary Access Control. 15

DMSL Domain Specific Modeling Language. 4, 12, 35, 55, 59, 86, 90, 93

DoS Denial of Service. 6, 32

ECA Event-Condition-Action. 23

ECDH Elliptic Curve Diffie Hellman. 32

FIFO first in, first out. 23

GDPR General Data Protection Regulation. 92

IoT Internet of Things. i, 2, 4–6, 10, 79, 93

LAN Local Area Network. 26, 28, 30, 31, 33

LTL Linear Temporal Logic. 84

MAC Mandatory Access Control. 15

MBSE Model-Based Security Engineering. 4, 13, 18, 25, 79

MDSE Model-Driven Software Engineering. 4, 10, 12, 13, 18, 21, 58, 90

MDSSE Model-Driven Secure Software Engineering. i, 5

MDT Model Development Tool. 55

MITM Man-in-the-Middle. 6, 31, 32

viii

www.manaraa.com

List of Acronyms ix

OCL Object Constraint Language. 15–17, 55, 58

OMG Object Management Group. 58

OO Object-Oriented. 25

PET Privacy Enhancing Technologies. 91, 92

POS Point-of-Sale. 30

RBAC Role-Based Access Control. 15, 72

SCOTT Secure COnnected Trustable Things. i, 3, 8, 9, 62, 74, 79

TLS Transport Layer Security. 91

UML Unified Modeling Language. 13

VPN Virtual Private Network. 30, 91, 92

WDA Wireless Data Aggregator. 66–69

WPAN Wireless Personal Area Network. 8

www.manaraa.com

Part I

Introduction

1

www.manaraa.com

CHAPTER 1
Introduction

1.1 Motivation

The underlying foundation for the idea we shall explore is interconnectivity; the idea that
everything, from our watch to the light bulb inside our living rooms, can somehow be remotely
controlled from an application, device or gadget of some-sort. This is a growing technological
trend today in and has introduced what is called the "Internet of Things (IoT)". This trend,
which is essentially an increase in connected devices, is not something new, but because of the
growth of mobile devices, this has acquired so much interest amongst people lately. Certain
technological trends like "Big Data", "Blockchain" etc. are now the driving forces for what
seems to be the "Next Big Thing". But what exactly makes this so revolutionary? One cannot
argue that the IoT is currently reshaping the world. Everything from elevators to airplanes.
Essentially changing the way we live, work and play – everything from our personal health to
the functioning of entire cities.

Major technological trends like "Big Data" are currently the driving forces behind the emer-
gence of IoT. However the true catalyst of IoT is the growing inexpensiveness of devices and
their building blocks. It is therefore important to realize that this is – in many ways – a
double-edged sword. Because while devices and their building blocks are cheap and quickly
assembled, they are unfortunately highly insecure. Hence this is therefore an important issue
to be addressed. Consequently the outcome at this stage is that an increasing number of
companies desperately seek leverage from IoT as they hope to win big in this so-called "gold
rush", that is IoT. For unlike some of largest companies like Apple, Amazon, Samsung etc.
are constantly raising the bar in terms of their well established ecosystems of interconnected
devices, more companies are desperately trying to keep up, in hopes to defy the odds and
"win big" in the gold rush. However this is one of the main challenges that are leading to IoT
devices with huge security flaws.

2

www.manaraa.com

CHAPTER 1. INTRODUCTION 3

It goes without saying that the sheer scale and impact of IoT security has has on todays society,
makes this issue paramount. As much as 30 billion devices are expected to be connected within
the year 2020 [Tiwary et al., 2018]. Furthermore, these interconnected devices are everywhere
from planes, elevators, power suppliers, health-critical devices (e.g. pacemakers), homes (e.g.
baby monitors), cars, bank services etc. A study conducted by [Ponemon Institute LLC, 2017]
showed that 80% of organizations do not routinely test their IoT applications for security
vulnerabilities. Needless to say that this is relatively alarming as it enables malicious actors
to spy, steal, disrupt, and ultimately endanger peoples lives with these applications. The
correlation between the high number of devices currently in use, the indifference and relaxed
approach that companies have in developing these devices, together with the ease of access
malicious actors have on these devices. Another worrying aspect of this is that the devices are
developed with an identical structure. This enables attackers to easily attack a high number
of devices and further increasing the risk of IoT applications.

We currently see IoT appearing in many areas and many forms; whether it be in our homes
(i.e. "Smart Home") or our public spaces (i.e. "Smart City"). Regardless of this, one of the
most promising areas in terms of the appliance of IoT is within health services. Use of medical
devices like sensors and wearables are helping saving lives, by simply being able to monitor
and control drug doses, monitor patients, assisting medical personal and even monitoring
vital signs (i.e. heart rate, breathing, skin temperature etc.). This is also the purpose of
the Assisted Living and Community Care System (ALCCS) initiated by Secure COnnected
Trustable Things (SCOTT), which has the intention of enabling elderly people to remain
living in the comfort of their homes. This shall be the context for which we shall examine the
applicability of a specific security-enforcing UML extension and approach called UMLsec.

Having established that the IoT can be hacked, manipulated and misused by malicious actors,
there are various solutions and approaches for dealing with security for software development.
The general consensus amongst many regarding this is that the earlier the treatment, the
better. The approach of UMLsec proposes extending the general purpose language of UML to
handle security at the specification and design level of the software development process. The
idea is that for some organizations, security is sometimes not a top priority in IoT development
and for other companies, that IoT applications are hard to properly secure. So our solution
is propose using an approach that focuses on handling security early in the process, with the
purpose to make software development easier and less costly for all parties involved. There is
no doubt that this is not enough for a comprehensive handling of the security issues we face
today, and more importantly in terms of the Internet of Things, but we do believe that this
will ease the process of changing the perception of security sometimes being a burden or that
it is hard to implement during development.

www.manaraa.com

CHAPTER 1. INTRODUCTION 4

With increasingly new appliances of technologies today, we are seeing new methods and ap-
proaches to development attempting to cope with this evolution. These new methods are
increasingly trying to reduce the costs, increase the efficiency and productivity in developing
new systems. One specific approach that aims to achieve this is ThingML. ThingML (as in
"things"/devices for IoT)is a Domain Specific Modeling Language (DMSL) and code gener-
ation framework aimed at generating code from models [Harrand et al., 2016]. The unique
features of this framework is that it is specific to the domain of IoT, aims to be more customiz-
able than other similar approaches and to provide the necessary abstraction that developers
need to improve productivity. Since the language uses a combination of architecture models,
state machines and an imperative action language, we hope to improve and validate this ap-
proach by integrating it with UMLsec. This attempt is to further improve the usability and
applicability of both approaches within the domain of Internet of Things (IoT). The work
in this paper is concerned with exploring how we can adopt and extend the UML extension
and approach of UMLsec, to add and improve security for the code generation framework of
ThingML, or eventually any Model-Driven Software Engineering (MDSE) approach or frame-
work.

1.2 Problem Formulation

Our objective with this thesis is to specify and enforce security at a specification and design
level, tailored explicitly for Model-Driven Software Engineering (MDSE). Using the UMLsec
approach for Model-Based Security Engineering (MBSE), the idea is that we can apply security
concepts early in the software development process and verify the models against such concepts
to further improve the security in software development. This thesis will explore mainly three
approaches:

• Model-Driven Software Engineering : concerned with development of systems based from
an initial set of requirements and the model from it, to ultimately implement a system
from that model.

• Model-Based Security Engineering : concerned with handling security at the specification
and design level.

• Using the UML extension mechanisms for extending the UML metalanguage: concerned
with using the UML extension mechanisms of stereotype, tags and constraints to extend
UML concepts for domain-specific use.

By adopting these approaches, we will try to address the problem of security vulnerabilities
in modern day software development (i.e. specific to the domain of IoT) which is also the
motivation for this thesis. Therefore with regards to this matter, we will attempt to answer
the following questions:

www.manaraa.com

CHAPTER 1. INTRODUCTION 5

(i.) In terms of usability, how is the UMLsec approach?

(ii.) Is the UMLsec approach applicable to a real-world use case (i.e. SCOTT’s Use Case of
Assisted Living Community Care System)?

(iii.) Can the UMLsec approach be combined with the code generation framework of ThingML
to facilitate Model-Driven Secure Software Engineering?

1.3 Contributions

During our work on this thesis, we have made various contributions and these are described
more detailed below:

1. A ThingMLsec profile for domain-specific security specification and design of Internet of
Things (IoT) systems.
During Chapter 4, we introduce the ThingMLsec profile, that extends the UMLsec
approach by [Jürjens, 2005] by adding new domain-specific security concepts for Model-
Driven Secure Software Engineering (MDSSE) and security specification at UML design.

2. A domain-specific threat scenario for modeling and analyzing possible adversary behavior
within Internet of Things (IoT).
The basic threats from the default attacker specified in UMLsec, does not address the
communication links threats for IoT technologies. During Chapter 3 we introduce a
modified and more specific threat scenario with added domain-specific concepts for the
defaultIoT attacker.

3. A detailed process for any system designer or system engineer to define a profile, apply
security requirements from that profile and verify the models against the constraints us-
ing the Papyrus modeling tool.
During the Chapter 4 we present the UML model elements and metaclasses correspond-
ing each stereotype and associated tags for defining a profile, and finalize this by sum-
marizing the UML2 diagrams corresponding to the applicable stereotypes. We proceed
by demonstrating the process of applying the stereotypes, tags and constraints to vari-
ous static and behavioral diagrams to eventually verify the models against the specified
constraints.

4. Application of the ThingMLsec profile and threat scenario of "defaultIoT" on the use case
and scenario of Assisted Living and Community Care System (ALCCS).
During Chapter 6, we specifically apply our domain-specific ThingMLsec profile and
defaultIoT threat scenario to a real-world use case of Assisted Living and Community
Care. Consequently, this demonstrates that UMLsec and our ThingMLsec is applicable
to any domain and use case, expressive enough to enforce most classes of constraints

www.manaraa.com

CHAPTER 1. INTRODUCTION 6

on various levels, and lastly since most of artifacts and model elements are provided by
UML, we can can use a wide variety of tools to replicate and improve upon this work.

1.4 The Internet of Things

Increasing intercommunication has paved the way for the emergence of Internet of Things (IoT)
which is constantly changing the way we interact with the digital world in many ways. And
with new "things" or intercommunicating objects, comes new opportunities and possibilities..

[Prehofer and Chiarabini, 2015] defines the idea of Internet of Things (IoT) as "[. . .] a variety
of things or objects – such as RFID (Radio-Frequency IDentification), tags, sensors, actua-
tors, mobile phones etc. – which are able to interact with each other and cooperate with
their neighbors to reach a common goal. Our increasingly connected world is the result of
these networks of "things" communicating and interacting with each other. Another notable
development in this current evolution of IoT, is that while the number of things are constantly
increasing, new businesses, services and other areas for this type of technology are growing
silmutainiously. This is paving way for new and better ways of developing applications for
IoT. The approach mostly discussed in this paper will be the model-based approach using
ThingML1.

1.4.1 Device-to-Device Communication for Internet of Things

Devices are an integral part of the IoT ecosystem. For it is the devices or smart objects/"things",
that are are the actual users of IoT, and therefore the essential requirement for IoT is to provide
connectivity between devices. The new Device-to-Device (D2D) Communication is therefore
a vital part of IoT. D2D Communication can essentially be divided into cellular license spec-
trum like cellular communication (i.e. inband communication), and unlicensed bands like
Wifi-Direct, Bluetooth, Zigbee and NFC (i.e. outband communication) [Militano et al., 2015].
An important issue to address in terms of D2D communcation is security and privacy, which
is also one of the main topics for this thesis.

The reason for addressing D2D communication is that the direct wireless connection of D2D
makes the connections highly vulnerable to security threats. Secure wireless connection can
be achieved by satisfying the security requirements of authenticity, privacy, confidentiality,
integrity and availability. This is required to successfully ensure and provide protection against
common attacks Denial of Service (DoS), masquerading, eavesdropping, Man-in-the-Middle
(MITM) attacks. Therefore central requirement for D2D communication is protection through
some form of encryption. In the subsequent subchapters we will explain two essential D2D

1
http://thingml.org/pmwiki.php

http://thingml.org/pmwiki.php

www.manaraa.com

CHAPTER 1. INTRODUCTION 7

communication technologies for the IoT – 5G and Bluetooth. These technologies will be
discussed further in the thesis in terms of the security vulnerabilities and possible solutions.

5G

The fifth and next generation (5G) of cellular systems is the response to the increasing demand
for higher data rates and capacity and represents a new form of cooperative communications
[Tehrani et al., 2014]. The conventional cellular systems, devices (i.e. portable devices with
wireless connectivity) are not allowed to communicate directly with each other in the licensed
cellular bandwidth and the communications take place through the base stations (BS). The
next generation of cellular systems or 5G will allow for device relaying – enabling devices in
a network to function as transmissions relays for each other and realize a large-scale ad-hoc
mesh network. 5G will also, with the functionality of Device-to-Device (D2D) communication
make it possible for two nearby devices to communicate with each other in a licensed cellular
bandwidth with either limited to none BS involvement.

Figure 1.1: D2D Communication with Device Controlled Link Establishment

5G cellular networks distinguishes between two types of two-tier cellular networks. (i.) Micro-
cell tier (BS-to-device communication) and (ii.) device tier (D2D communication) [Tehrani
et al., 2014]. For this thesis however, we will be focusing on the latter – two tier cellular
network involving D2D communications. Nonetheless there exist 4 types of device tier com-
munications, and from the use case description of SCOTT (i.e. physical view of ALCCS), we
assume the communication labeled with 5G, is within Direct D2D communication, and specif-
ically the Direct D2D communication with device controlled link establishment(DC-DC). The
other alternative however is the Direct D2D communication with operator controlled link
establishment (DC-OC). The reason behind this assumption is that the BS which would rep-
resent the operator, is not present in the physical view described in the scenario, making it
natural to assume that the operator is non-existent. With this form of communication, the

www.manaraa.com

CHAPTER 1. INTRODUCTION 8

user’s data is being sent form one device to the other, and therefore we will address the security
and privacy issues in further detail in Chapter 3.

BLE

Bluetooth is an open standard for short-range radio frequency (RF) communication. It is
a wireless technology used primarily to establish Wireless Personal Area Network (WPAN),
and allows for a network between a wide range of devices to either transfer data or voice
[Padgette et al., 2017]. Bluetooth Low Energy (BLE) represents a recent realization to meet
the constraint for IoT devices and for the new form of application scenarios like remote mon-
itoring involving BLE-enabled wearable sensors for the use of smartphone connectivity. This
is central to the scenario that will be introduced in Chapter 6. Bluetooth like many D2D con-
nection technologies are vulnerable to several wireless networking threats and vulnerabilities.
Therefore to improve the security of both Bluetooth 5G we shall look at the preexisting and
other ways of ensuring security in Chapter 3.

1.4.2 Use Case Application of Internet of Things

The application of UMLsec during this thesis will be for the Assisted Living and Community
Care System (ALCCS) proposed by the project Secure COnnected Trustable Things (SCOTT)
[Brandsma, 2017]. This use case enables frail elderly people (e.g. whom are prone to falling)
to remain living in the comfort of their own home longer. This attempt is motivated by the
incentive to lower the ever soaring costs of health care and aging population. The solution
is a personal response system using multi-modal sensoric information to deduce the context
of the elderly resident, as well as that of potential caregivers, to select the most appropriate
caregiver to help. The Caregiver in this case, may be informal, which enables less costly and
more trustful exploitation of the personal emergency.

A typical scenario for the use case of ALCCS is e.g. the "Call For Help" scenario which
is one of the scenarios demonstrating the trust delegation within the context of emergency
handling. The scenario specifically demonstrate how the resident call for help by activating or
pressing the panic button and how the ALCCS handles the entire flow related to that specific
situation. The "Call For Help" will be the use case mostly in focus in terms of demonstrating
the modeling of behavior diagrams in relation to UMLsec.

1.4.3 Why the Use Case of Assisted Living?

There are many reasons why the Assisted Living and Community Care System (ALCCS) is
perfect for the demonstration of UMLsec. In short the reasons are connected to the objectives
specified by [Brandsma, 2017]. In this subsection we will go into the most relevant objectives
to further clarify the motivation for choosing this use case.

www.manaraa.com

CHAPTER 1. INTRODUCTION 9

i. Focus on Wireless Systems

The ALCCS uses in-home wireless connectivity like Wi-Fi, Bluetooth Low Energy (BLE),
proprietary ones to communicate, localize and securely enter the given premises via proximity.
The incentive will explore cutting-edge technologies to achieve low power, low bandwidth,
low cost, high coverage cellular technologies to allow for more affordable, reliable, anytime,
anywhere device connectivity to the device worn by the Resident. The chosen technologies
will serve as the introduction of a wider palette of cellular technologies for IoT during the
introduction of 5G (fifth generation) cellular networks.

The relevance of this objective is that the one of the frequently exploited areas in terms of
security is the communication links. This also applies to IoT systems, and there the utilization
of cutting-edge technologies within connectivity is highly relevant for the application of such a
domain-specific approach like UMLsec. It is therefore interesting to explore the expressiveness
and adaptability of UMLsec in terms of new technologies and communication links that did
not exist at the time of its inception.

ii. Focus on Smart Sensor & Actuators

Another focus area of the ALCCS is using smart sensors and actuators to make the effort of
caring and monitoring the elderly location and vital-signs etc. The SCOTT system specifica-
tion for Assisted Living comprises specifically a Smart Lock as an example of a smart actuator
and a variety of other state-of-the-art sensors. Furthermore the tasks of some of the smart
sensors will be to able to locate the resident (i.e. elderly) in their own home. The proceeding
iterations will consider various wearable vital-sign sensors, as well as ubiquitous localization.

Therefore since the main objective for the thesis is to adopt and demonstrate an approach
to specify and enforce security requirements (i.e. UMLsec) at the design level of systems
development (i.e. IoT domain), the requirement for the use case is fitting since it utilities
sensors and actuators thus representing a suitable IoT ecosystem.

iii. Focus on Security, Safety, Privacy & Trustability

The edge-based (i.e. distributed) solution for the ALCCS is centered on trust delegation
enabling an elderly person to automatically solicit help from Caregivers (e.g. family members)
in a privacy-aware manner. The system takes care of all context derivation and trust-based
delegation. Therefore any information about the "accidents" and people involved does not
have to leave the premises unless the situation requires it so. Some security and privacy
measures are incorporated into the infrastructure, like the choice of a focusing on a distributed
computing mode as opposed to centralized, with also an option for mixed computing available
as an option.

www.manaraa.com

CHAPTER 1. INTRODUCTION 10

The strong and clear focus on security and privacy is one of the best reasons why the ap-
plication of UMLsec to the ALCCS is so suitable. While privacy is not primarily the focus
for this thesis, it is considered in the construction and application of the profile extension of
UMLsec. With UMLsec we will try to improve exactly these focus areas, thus making the use
case particularly suitable.

1.4.4 The Goal

The "Use Case Specification and System Architecture for Assisted Living" by [Brandsma,
2017] provides a multi-view architecture of the ALCCS. With this in mind, the objective for
this thesis is therefore to enforce security requirements to the various views and diagrams
provided by the use case. Since one of the questions that this thesis will try to answer is the
applicability of UMLsec in a real-world use case, the objective with this effort is to compare
the aforementioned diagrams and views, with the security-enforced UMLsec diagrams, in order
to finally attempt to discuss the usability of the whole process. From this process, we will
eventually discuss the possibility of adopting UMLsec to a specific approach of Model-Driven
Software Engineering (MDSE) that is ThingML.

1.4.5 Developing for Internet of Things

To provide a more complete overview of the development of Internet of Things (IoT), we
need to address the alternative methods and approaches currently in use. The heterogeneous
nature of Internet of Things (IoT) is the main reason why we need different methods, tools and
approaches to develop IoT devices and software. [Prehofer and Chiarabini, 2015] mentions
the two most common approaches and tools for developing applications for IoT today. These
are IoT Mashup tools and Model-based approaches (e.g. ThingML).

Mashup Tools

Mashup tools are visual, interactive modeling tools for the message flow between devices. The
main idea behind mashup tools is to provide a simple way to develop IoT applications, and this
is done by mashing up existing services in the Web. Well known mashup tools are WoTKit,
Clickscript and Paraimpu [Prehofer and Chiarabini, 2015].

Model-Based Approaches

The other approach to be addressed and which is relevant for this thesis is the model-based
approach using ThingML. This specific model-based framework will be discussed in further
details in section 2, but the main concept behind model-based development with ThingML is
to model and generate code using the DSL (Domain Specific Language) and framework.

www.manaraa.com

CHAPTER 1. INTRODUCTION 11

1.5 Model-Driven Software Engineering

Figure 1.1: Model-Driven Software Engineering [Jürjens, 2005]

1.5.1 UML

Before exploring the rationale behind using the UML extension in the first place, it is essential
in the first place to give a top-down overview of what UMLsec is. Since UMLsec is an extension
of UML, utilizing the syntax and semantics of UML, we must first explore the benefits of using
such an extension [Jürjens, 2005]. Using UML allows for many advantages. Firstly UML can
be described as a de-facto standard in industrial modeling notations. This is because an
increasingly large number of developers are trained in UML. The reason behind this is that
most educational institutions teach modeling using UML, and also there exist a large quantity
of educational resources on the approach. Consequently more proficient users are obtained.

Another main advantage of UML, is that it provides graphical intuitive description techniques
with multiple views of a system, through various diagrams (classes, sequences, actions etc.).
With UML it is possible to model a system on a high level and all the way down to the smaller
parts/modules/components on a lower level.

In terms of details, UML is relatively precisely defined, since it defines syntax and semantics of
the UML notation in a relatively high degree of detail. Although the syntax and semantics of
UML might be well defined, the notation is arguably not entirely formal and the completeness
of models is hard to determine. These are some of its drawbacks. This means that the
semantics and syntax of UML can – for a given model of a system/module/class – allow many
different syntactical and semantically correct models. This can be disadvantage in terms of
the possibility of producing models of a wide range in terms of quality.

www.manaraa.com

CHAPTER 1. INTRODUCTION 12

One of the benefits of UML being a de-facto standard is that there is good tool support. This
further fuels its role as a standard, as most educational institutes and developers prefer to use
UML for this exact reason. Therefore there is a low threshold for using UML. Furthermore
when modeling in UML, a variety of tools exist that provide the basic functionality required
to use the various diagrams.

1.5.2 ThingML

ThingML2 is Domain Specific Modeling Language (DMSL) and code generation framework
that allows developers use models to implement a system, and the models are used to generate
code. The language describes software components and communication protocols, where the
formalism consists of a combination of architecture models, state machines and an imperative
language. This is imperative in the sense that it uses statements to change the state of the
program. The toolset for ThingML consists of text editors for the purpose of creating and
modifying the models, a set of transformations to create diagrams from the models and lastly
a set of code generators to compile the language to code (i.e. Java, C and Javascript).

To best understand what ThingML is and why it is a notable approach to developing ap-
plications for IoT, we must first look at the objective of MDSE (Model Driven Software
Engineering). The general concept of MDSE is to start by producing a model of the system,
from a set of requirements and finally implement a system from the model as shown in figure
1.1. The implementation can be done in two ways, either automatically (using e.g. ThingML)
or manually.

The general sense behind MDSE is the effectiveness and ease of automatically generating
code from models. Although it has its issues, there are many areas where this method of
developing software (SW) has proven to be advantageous. Many advocates of MDSE mention
"increase of productivity" as the main factor for developing in this manner, but there has
been observed some drawbacks too. [Harrand et al., 2016] lists one of the biggest drawbacks
of MDSE connected to code generators being in the form of "black-boxes" that are not easy
to trust with the quality of code. The other drawback of MDSE is that the models and their
respective languages are not necessarily suited for code generation.

ThingML, on the other hand has been developed to address the drawbacks associated with
code generating in terms of MDSE. ThingML is not only a modeling language but also a code
generation framework tailored for the heterogeneous and complex nature of modern systems,
in the sense that it is a highly customizable and supports multi-platforms. ThingML also

2
http://thingml.org/pmwiki.php?n=Main.HomePage

http://thingml.org/pmwiki.php?n=Main.HomePage

www.manaraa.com

CHAPTER 1. INTRODUCTION 13

addresses some concerns of MDSE by providing customizability to its code, and an abstraction
that the developers require to be able to improve productivity. In short, the main idea behind
ThingML is to enable the ability to produce source code, in a more efficient way, something
that was not easily guaranteed by MDSE.

1.6 Model-Based Security Engineering

Figure 1.1: Model-Based Security Engineering [Best et al., 2007]

Since the main focus of this thesis is based on model-driven development using the ThingML
framework, we need to address model-driven development in terms of security. The main role
of MBSE (Model-based Security Engineering) is to provide a solid approach for developing
secure systems. Firstly the initial steps of model-based development still apply as shown
in figure 1.1. However in terms of MBSE, we first need to analyze the model to check if
the system fulfills the security requirements on the design level. Thereafter we generate the
test sequences from the model, to check if the code is in fact secure. Furthermore with this
approach, the security requirements and assumptions of the system environment can either
be specified within the Unified Modeling Language (UML) extension specification UMLsec or
within the source code. The method in discussion for this thesis is using UMLsec.

1.6.1 UMLsec

To fully understand the importance of UMLsec, we must look at the different benefits and
drawbacks for using this extension. We have established the motivator for using UML within
the context of Model-Based Security Engineering (MBSE). However in terms of model-based
security engineering, we need to investigate how UMLsec can fit in this context.

www.manaraa.com

CHAPTER 1. INTRODUCTION 14

There are many reasons why the UMLsec extension is suitable for model-based security engi-
neering. One of the main incentives for using UMLsec is that it allows one to evaluate UML
specifications for security weaknesses on the design level. Within the development process, the
design process is one of the earlier activities. By evaluating for security weaknesses early in
the development process, we can discover logical holes and potential errors, and furthermore
be able to solve early flaws before they become time and cost-consuming.

The second incentive for using UMLsec is that it encapsulates established rules for prudent
security engineering in the context of a widely known notation. Using a well know notation and
de-facto standard as the basis and context can be a major advantage in terms of communicating
and understanding the predefined security specifications.

Another advantage of using UMLsec is that it allows the developer to consider security re-
quirements from early in the system development process. This is arguably one of the best
ways of developing secure systems is in-cooperating security as early as possible. Since one of
the main issues today is the trade-off between developing highly secure systems and developing
cost-effective systems, one way of decrease this trade-off is early security engineering.

Another incentive for using UMLsec is that it includes little additional overhead since the
UML diagrams can serve as system documentation. This is further strengthened by the fact
that UML is a de-facto standard, where a high number of developers are trained in UML.

One must also emphasize that UMLsec also have its weaknesses. Since UMLsec is an extension
of UML, it is important to mention how the drawbacks of UML because they also affect its
extension, UMLsec. Arguably the main weakness of UML is tied to its formality. Although
UML is very precisely defined and provides a high degree of detail, it is nevertheless not
entirely formal.

1.7 Related Approaches

The following approaches are related and alternatives to UMLsec. They are derived from a
survey by [Talhi et al., 2009], where he weighs the different approaches against each evaluate
the usability. We shall briefly look at these approaches and frameworks to discuss what
separates them from UMLsec, and finally provide an overview of how they specify security
requirements.

www.manaraa.com

CHAPTER 1. INTRODUCTION 15

1.7.1 Alternatives

Aspect-oriented Approach

The Aspect-oriented approach proposes the modeling of access control policies, and only lim-
ited to these types of policies. This is done by supplementing UML with new diagrams that
represent the schemes of (1) Role-Based Access Control (RBAC), (2) Mandatory Access Con-
trol (MAC) and (3) Discretionary Access Control (DAC).

The MAC, MAC and RBAC are separated from the main design, thus making it easy to alter
the design without impacting the entire security of the application. These schemes are further
decomposed into security feature representing specific elements of access control policies (e.g.
permissions, delegation rules etc.)

Zisman’s Framework

The Zisman’s framework is a approach that aims to support the design and verification for
secure peer-to-per applications. The framework uses UMLsec for designing models and speci-
fying security requirements. In addition to representing possible attack scenarios and potential
threats, the framework models abusive cases (i.e. behavior) thus helping designers to identify
the security properties to be verified in the system. The framework also defines a graphical
template language for expressing properties to be defined.

SecureUML

SecureML is an approach to model RBAC policies for model-driven systems, by providing a
general schema for systems development through combination of design modeling languages
with security modeling language. Therefore it does not fix one specific design modeling lan-
guage. A delimiting feature of this framework is that it only focuses on specifying RBAC
model, and also does not support secure code generation.

SOCLe

The SOCLe project provides a framework that integrates security into software design. It also
provides the verification of UML specifications and graphical user interface tool that allows
the visualization of the verification result. Using this approach and framework, the security
policies are simply specified using Object Constraint Language (OCL) (see Chapter 5).

For-LySa

The ForLySa approach proposes two UML profiles to model authentication protocols, which
are the following:

www.manaraa.com

CHAPTER 1. INTRODUCTION 16

(i.) Static For-LySa profile: describes how the authentication protocol concepts (i.e. Server,
Keys, Messages etc.) can be modeled using UML diagrams.

(ii.) For-LySa profile: models the dynamic aspects of the protocol in sequence diagrams,
including the information needed to analyze the protocol.

For validation of the protocol, the approach defines a specification language with semantics
to write pre/post-conditions and constraints. A delimiting feature with this approach is that
it exclusively focuses on modeling authentication protocols.

AuthUML

The AuthML framework focuses on incorporating access control policies solely into use case
diagrams. The framework aims toward analyzing over modeling (although not excluded) of
access control policies during the early stages of the software development process before
proceeding to the design modeling. This is to ensure that the requirements are complete,
consistent and conflict-free.

Summary

[Talhi et al., 2009] distinguishes the various approaches for specifying and enforcing security
requirements at the design level with UML based on three approaches:

i. Approaches based on artifacts by UML specification.

ii. Approaches that require extending the UML metalanguage.

iii. Approaches that require explicit extension of the UML metalanguage.

The first kind of approach uses the three following UML artifacts for security specification
(i.) Stereotypes, (ii.) Object Constraint Language (OCL) and (iii.) behavior diagrams. The
second kind of approach specifies by either (i.) extending the UML metalanguage or (ii.)
creating a new metalanguage. To distinguish which contribution utilizes which approach,
[Talhi et al., 2009] also summarizes the comparison of the approaches using the following
table 1.1. The }X denotes the contributions we have made while adopting and extending
UMLsec together with the Papyrus tool. In other words the tool helped us enforce security
requirements using more approaches than originally mentioned by the source.

www.manaraa.com

CHAPTER 1. INTRODUCTION 17

Table 1.1: Comparison of the related approaches

Stereotypes & tags
OCL

Behavior diagrams

Extend UML metalanguage

New UML metalanguage

UMLsec X }X }X }X –
Aspect-oriented X – – X –
SecureUML X X – – X
Zisman – – X – –
SOCLe – X – – –
For-LySa X – – – –
AuthUML – X – – –

}X= Our contribution to this work.

The report conducts a usability survey to compare the various approaches and weighs the
different advantages and drawbacks for each contribution. Finally, the report concludes that
efforts for verifying the design against security requirements are very important, regardless of
the chosen approach. This implies that the tool you use for the job is not so important, just
as long as the job itself is being done.

1.8 Outline

This thesis is divided into five parts (see Fig. 1.1) as following:

P1: Introduction: introduces the main topic and relevant concepts, and also describing the
context and use case of our topic. i.e. Chapter 1.

P2: Background: sets up the in-depth background knowledge, fundamental for the remain-
ing parts of the thesis. i.e. Chapters 2 and 3.

P3: Design: shows the process of designing for UMLsec through defining and constructing
a profile, and specifically the work behind the profile extension. i.e. Chapters 4 and 5.

P4: Application: shows the process of applying and using the UMLsec profile to the actual
use case of ALCCS. i.e. Chapter 6.

P5: Discussion: focuses on discussing the outcome related to the use of UMLsec, the actual
advantages and/or limitations of this approach, the future of this approach in terms of
use in other projects etc. i.e. Chapters 7 and 8.

www.manaraa.com

CHAPTER 1. INTRODUCTION 18

Figure 1.1: Structure and Outline of the Thesis

Furthermore the parts are divided into the following chapters:

• Chapter 1: Introduction
Introduces the motivation, theme, problem and relevant approaches regarding the thesis.

• Chapter 2: ThingML
Introduces the MDSE approach of ThingML; a code generation framework.

• Chapter 3: UMLsec
Introduces the MBSE approach of UMLsec for secure systems development.

• Chapter 4: UML Profile Extension
Provide the information (i.e. rules) for creating a UMLsec profile.

• Chapter 5: UMLsec Profile Construction
Discuss the available and needed tools for UML profiling, and finally create our own
extension based on UMLsec – namely ThingMLsec.

• Chapter 6: The Application of ThingMLsec to ALCCS
Introduce the case and relevant use case scenario, and thereafter apply and verify the
stereotyped ALCCS models with security requirements and their constraints.

www.manaraa.com

CHAPTER 1. INTRODUCTION 19

• Chapter 7: Conclusion
Provide a summary, discuss and measure the process of our using our approach to
handling security.

• Chapter 8: Future Work
Possible ways of proceeding, to further build and enrich our work.

www.manaraa.com

Part II

Background

20

www.manaraa.com

CHAPTER 2
ThingML Code Generation Framework

We have previously established that the main goal behind the conception of Model-Driven
Software Engineering (MDSE), was to increase productivity and decreasing high costs of
developing software, by generating code from models. However the pre-existing trade-off
between the increase of productivity and the reduction of cost, makes this difficult. The
main issue with MDSE approaches is firstly that modeling languages are being used for other
purposes not suited for code generation. The other issue is that code generation frameworks
work as "black boxes", where developers have little insight and control on the code being
generated. This makes it difficult to trust and may result in suboptimal solutions.

Since ThingML was built with the intension to minimize the main drawbacks of MDSE, this
section will give an overview and insight in the code generation framework that characterizes
ThingML, and attempts to uncover how it’s built and operates. The main idea is to shed
light on the key structures and parts that it relies on – Configurations and Things, and how
they work together to form ThingML. This section will provide further details on the so-called
extension points within the key structures; i.e. what role they play and why they exist.

ThingML – being a modeling language and tool designed for code generation – aims to become
far more customizable in order to address the main issues of MDSE. Therefore ThingML
provides more customizability of it’s code, including giving developers the abstraction that
they need to improve productivity to reduce the idea of a "black-box" with increased insight
in the code generation process. Thereby making it a "highly customizable multi-platform code
generation framework" in short [Harrand et al., 2016].

2.1 Structure of ThingML

To further understand whats make ThingML unique among the MDSE frameworks, we need
to look at how it is made up. Therefore in terms of how ThingML as a tool and framework

21

www.manaraa.com

CHAPTER 2. THINGML 22

Figure 2.1: Overall structure of the ThingML DSML [Harrand et al., 2016]

is constructed, we can look at the two parts that make up for its structure. Firstly you have
the Thing(s). The "thing" represent the software components. It is also the implementation
unit/component/process, depending on use, context and/or approach. Then there is the Con-
figurations, that describes the representation of the software components (i.e. "Things").The
configurations can also be described as a set of instances of the defined "things" and the set
of connectors between two parts of an instance. On a lower level, we have extension points
that exist within the two main structures.

Extension points are essentially abstract classes or interfaces in the code generation of ThingML,
with a set of methods responsible for generating code for their respective model elements (i.e.
Configuration or Thing(s)). There exist 10 extension points in the ThingML, that are sepa-
rated between the two model elements.

2.1.1 Thing(s)

A "Thing" can be shortly defined as the representation of a software component. This can
define variety of different elements, like properties, functions, messages, ports and a set of
state machines [Harrand et al., 2016]. These properties are stored locally within a Thing,
as variables, where they can be accessed using functions. However these variables are not
accessible by other things. A Thing’s only public interface within a thing is through ports,
which can receive and send a set of messages.

www.manaraa.com

CHAPTER 2. THINGML 23

The first 3 (three) extension points are directly related to the code generation of "Things".
These are depicted on fig. 2.1.

1. Actions/Expressions/Functions

The first extension point within the framework, is related to the code generation that corre-
sponds to code for action, expressions and functions in a Thing.

2. Behavior implementation

The second extension point corresponds to the code generation from the state machine and
Event-Condition-Action (ECA) contained in things.

3. Ports/Messages/Thing APIs

The third and final extension point of the Thing element, corresponds to the wrapping of
"things" into reusable components on the target platform.

2.1.2 Configurations

Configurations essentially describe the thing(s) interconnection [Harrand et al., 2016]. Within
this part of the ThingML model, there are five (5) extension points that are related to the
code generation.

The second group of extension points corresponds to the Configurations (see fig. 2.1). Some
of the extension points are not directly connected to the generation of code, but supports the
code generation by providing validation, packaging and generally setting up the code.

4. Connectors/Channels

This extension point is responsible for the code generation corresponding to the connectors
and transporting messages from one thing to the next.

5. Message queuing/FIFOs

This extension point is used to tailor how messages are handled when the connectors are
linking two things running on the same platform.

6. Scheduling/Dispatch

This extension point is in charge of generating code which orchestrates the set of things running
the same platform.

7. Initialization and "Main"

In this extension point the objective is to generate code for the entry point and initialization

www.manaraa.com

CHAPTER 2. THINGML 24

code in order to set up and start the generated application on the target platform .

8. Project structure/Build script

This is not an extension point directly related to generating code, but it is responsible for
providing the required file structure and build script in order to make the generated code well
packaged and easy to compile and deploy to the target platform.

The last two extension points are related to the validation of code, within the ThingML
framework. In figure 2.1, these two extensions are visualized and modeled as part of the
validation part of the framework.

9. Checker

This is the part of the framework that provides support for validating an input ThingML
Model before generating code from it. Furthermore this part includes the syntactical checks
and a customizable set of rules that apply to the application logic expressed in a module.
The rules are customizable, making it possible to extend the set of rules, and to enrich the
preexisting compilers.

10. Code generator testing framework

The tenth and final extension point has the purpose to validate code generators, and currently
consists of 140 extensible tests.

www.manaraa.com

CHAPTER 3
UMLsec

3.1 Security Engineering

During Chapter 1, we discussed how the increasing interconnection is adding new potential
vulnerabilities. The increasing impact of such attacks makes this a pressing matter, and
therefore this section will go more into the actual security measures that can be added to
increase the level of security in such systems using MBSE.

In terms of Security Engineering, [Jürjens, 2005] mentions two issues that need to be addressed
when attempting to develop secure systems. One of the issues today is that systems commu-
nicating over various links are prone to many different attacks. This is especially regarding
communication over open, unprotected networks. In terms of attacks over the communication
links, an adversary is capable of reading, inserting and or/deleting messages exchanged over
the communication links. Some ways to prevent or minimize this threat, is encryption and
cryptographic protocols. These are some of the most commonly known methods to ensure
secure communication.

The other issue that needs to be addressed in terms of developing secure systems, is direct
attacks on the physical nodes. The main concern is that getting access to data and manip-
ulating the data can be fairly easy, especially if there are discrepancies in protection of the
physical or hardware component(s) of the system. There are many different ways of imple-
menting security measures. A probable scenario is if an attacker acquires access to one of the
aforementioned physical nodes, a possible security measure can be to use protected hardware
measures like "smart cards". In certain systems this might be a necessary security measure
to treat the potential vulnerability.

A unique feature of UMLsec is that it is designed for more Object-Oriented (OO) and compo-
nent based systems [Jürjens, 2005]. This approach adds security in general by adding two very

25

www.manaraa.com

CHAPTER 3. UMLSEC 26

important elements. The first is method calls. With methods calls there is an added general
mechanism for controlling access to data. This also adds the possibility of validating every
access or request made to a certain subset of the system. The other element is information
hiding. This mechanism is achieved by the encapsulation of data in objects. The result of this
is that data within an object, can only be accessed within objects, and messages are the only
way to communicate.

3.2 UML Extension Mechanisms

To go more specifically into the characteristics of UMLsec, we can start by addressing the
nature of UMLsec. UML offers three (3) main "lightweight" language extension mechanisms,
which are stereotypes, tags and constraints. These mechanisms are expressed in a profile. In
short, stereotypes are used together with tags to formulate the security requirements and
assumptions.

3.2.1 UMLsec Stereotypes

The central idea with UMLsec, is to use stereotypes to define new types of modeling elements
that extend the semantics of existing types or classes in the UML metamodel. This can be
done on the physical og logical level of the system or eventually as policies for the system to
obey.

Security Assumptions

The first type are the security assumptions, and they add security-relevant information on the
physical level of the system. This is for example the stereotypes of «Internet», «LAN» or
«wire».

Security Requirements

The other type of stereotypes is security requirements. These add security relevant information
on the logical structure of the system or on specific data values. This is for example the
stereotypes of «secrecy» for the system, or «critical» for specific data values.

Security Policies

Security policies summarizes the protection requirements of a system, and the policies that
system parts are supposed to obey. There are several such policies in UMLsec like «fair

exchange», «data security». The most important policies are as follows:

1. Fair exchange

www.manaraa.com

CHAPTER 3. UMLSEC 27

The policy of fair exchange assures that the trade (in terms of trading good) is performed fairly,
preventing participating parties from cheating one another. The general idea is relatively clear
from the name of the policy – that the exchange should be performed fairly in regards to the
parties.

2. Non-repudiation

With non-repudiation, the idea is that the action in discussion cannot be successfully denied.
This, in the sense that it is "provable", usually with respect to some trusted third party. The
non-repudiation security policy can be used to enforce the fair exchange policy. If one can
assure the fairness of an exchange by including an unbiased and trusted third party, that
further improves fairness and prevents parties from cheating one another.

3. Role-based access control

Role-based access control (rbac) is related to how access control managed within a system.
To control access to protected resources, the idea is to keep permissions manageable by not
assigning them to users, but roles instead. Each user’s permissions and level of access control
is based on what type of role they have within the entirety of the system.

4. Secure communication link

To preserve secrecy and integrity of data during transmission, sensitive communication links
between ports/modules/components need to be protected. This is especially a very important
policy because of the growing nature of interconnected systems.

5. Secrecy and integrity

A vital requirement in terms of data security is confidentiality (secrecy) and integrity. With
confidentiality, the idea is that data is read only by legitimate parties. On the other side with
integrity, the idea should be modified only by legitimate parties.

6. Freshness

The idea behind the freshness policy is that messages created and/or sent during the current
execution of the system, should not allow replays of older messages by the user or adversary.
In regards to this policy, it is usual to use a so-called "nonse", which is a random value to be
used once, to enforce the freshness.

7. Authenticity

This security policy is divided into two separate types of authenticity. At first, you have the
message authenticity. This type of authenticity is about being able to trace back the piece of
data to the original source (i.e. origin). The second type of authenticity is entity authenticity.
This type is about being able to identify a participant, and to actively confirm the level of

www.manaraa.com

CHAPTER 3. UMLSEC 28

participation within a given time.

8. Secure information flow

Before diving into the policy, we can identify many systems as having a multi-level security
structure. These levels are often different levels of data sensitivity. In general there are mainly
two levels; high and low. High security level is the highly sensitive data (e.g. personal/security
number, account number etc.), and the low security level is the least sensitive data (e.g.
number of saved items, nickname etc.). In such multi-leveled systems, different trusted parts
may interact with untrusted parts. With this type of interaction, one has to ensure that there
is no leakage of (sensitive) information.

To ensure the protection of sensitive information in multi-level security systems, there are
therefore two policies; "no down-flow" and "no up-flow". Firstly the "no down-flow" means
that the high security level data (trusted data) may not influence the low security level data,
but the opposite is permitted. On the other side, the "no up-flow" means that the low security
level data (untrusted data) may not influence the high level data, but the opposite is permitted.
These are security properties that are called secure information flow.

9. Guarded access

The security mechanism that is access control, ensure that only legitimate parties have access
to a security relevant part of the system. In this security policy, we are talking about access
control being enforced by guards.

3.3 Security Analysis & Adversary Model

In this section, we will briefly explain an underlying aspect of UMLsec that will be used
throughout the thesis, and specifically as part of profile extension and to further provide
security relevant information with the use of the stereotypes, tags and constraints.

An essential part of analyzing security is being able to address the potential adversaries inter-
nally and/or externally capable of harming our system. With UMLsec we can model specific
types of adversaries that can attack different parts of our system. An example of this is that
we can have a attacker of the type insider, that is capable of harm through the communication
links in a company wide Local Area Network (LAN).

So how does UMLsec model the potential adversaries that can attack our system? In terms
of security analysis of the subsystem specification, this is done by modeling the adversary
behavior. The first step is to define the set of abstract threats {delete, read, insert, access}
respective to the specification of the physical layer of the system. The idea is that we should

www.manaraa.com

CHAPTER 3. UMLSEC 29

be able to model specific types of adversaries that can attack various parts of the system in a
specified manner. The idea is that the adversary actions read, delete and insert, meaning
that the adversary may read, delete and insert messages on a communication link. For nodes,
the threat of access means that the adversary may directly access the physical node in the
system.

Furthermore UMLsec assumes a function ThreatsA(s) which takes an adversary type A and a
stereotype s and returns a subset of the adversary actions of {delete, read, insert, access}
[Jürjens, 2005]. The general idea with these functions is that they arise from the specification
of the physical layer of the system, particularly using deployment diagrams. This is explained
in further detail in chapter 4. Henceforth the objective is to using the function ThreatsA(s) to
specify the threat scenario associated with the adversary type A, against either a component
or communication link stereotyped s.

With this in mind, we can state that the threat scenario determines two things. The first is
which data the adversary can obtain by accessing the components (i.e. nodes). The second
thing is which actions the adversary is permitted by the threat scenario to apply to the
concerned links (i.e. communication links). From this, and more specifically the abstract
threats we can derive the more basic concrete threats used in the modeling and analyzing the
possible adversary behavior.

The modeling and analyzing of possible adversary behavior is done in the following way. First
we have to require that the adversary needs to access the system part for it to be attacked.
In theory this means that for example that an attack can only happen on a wireless network,
if the adversary is within physical proximity. The second step of modeling and analyzing
adversary behavior is broken down to the to the atomic actions of delete, read and insert,
with relation to the communication links connected to the nodes. Thereby if the adversary
access the node contained in the system, this means he may delete, read and insert messages
on the communication links.

Given a UML subsystem S the function of ThreatsA(s), consisting of a link or node x in a
deployment digram gives rise to the function threatsSA(x) of concrete threats from adversaries
A and returns a set of strings threatsSA(x) ✓ {delete, read, insert, access}. This allows for
evaluation of UML subsystems through their execution semantics by referring to the security
framework using UML Machine Systems. The latter is not covered in this thesis, but is
described in detail in [Jürjens, 2005].

UMLsec provides example of threat sets associated with some common adversary types and
are depicted in Fig. 3.3 and 3.3.

www.manaraa.com

CHAPTER 3. UMLSEC 30

Fig. 3.3 describes an example of the default (i.e. average) attacker with the modest of capa-
bilities, meaning that there naturally is a possibility that a more sophisticated and capable
adversary might do more harm than the aforementioned default attacker, even on the more
restricted communication links (e.g. «wire»). What is assumed by the default adversary’s
capabilities is that this type of attacker is able to read, delete and insert messages that are on
the «Internet» communication link. On the «encrypted» Internet link however, like Virtual
Private Network (VPN), the attacker would not be able to read, or insert messages properly
encrypted (i.e. assuming attacker does not easily gain access the encryption key). However
the attacker might still be able to delete messages regardless of being encrypted or not (e.g.
bringing down the network server). Moreover the default attacker is assumed not to have
access to either a Local Area Network (LAN) or «wire». Furthermore the attacker is assumed
not to have access to or eavesdrop on connections or security-critical devices like smart card,
Point-of-Sale (POS) devices or issuer node. It is well noticed that a more sophisticated at-
tacker might be able to gain access to some of these devices and connections, but the main
concern here is the default attacker.

Stereotype Threatsdefault()

«Internet» {delete, read, insert}
«encrypted» {delete}

«LAN» ;
«wire» ;

«smart card» ;
«POS device» ;
«issuer node» ;

Table 3.1: Threats from the default attacker

To showcase a different type of attacker, Fig. 3.3 shows the insider attacker and his/her
capabilities. This is merely an example of a concrete attacker provided by [Jürjens, 2005].
The main idea is that as an insider, the adversary might access e.g. the encrypted Internet
communication link and access the local system components, given that he/she might know
the corresponding keys (i.e. to decrypt).

www.manaraa.com

CHAPTER 3. UMLSEC 31

Stereotype Threatsinsider()

«Internet» {delete, read, insert}
«encrypted» {delete, read, insert}

«LAN» {delete, read, insert}
«wire» {delete, read, insert}

«smart card» ;
«POS device» ;
«issuer node» {access}

Table 3.2: Threats from the insider attacker

Nevertheless, for security in IoT systems, we need to address that the communication occurs
over other links that are not addressed by [Jürjens, 2005] and the default attacker model in
Fig. 3.3. During Chapter 1, we explained the communication of IoT enabled by 5G networks,
and the newest update of Bluetooth – Bluetooth Low Energy (BLE). During the following
subsections we discuss the threats associated with these types of communication links, and
how they can be addressed. Finally our findings will provide a more domain-specific threat
scenario for the attackers within IoT and therefore a more updated defaultIoT attacker.

3.3.1 5G Security

As previously mentioned during the introduction, we defined 5G cellular networks being distin-
guished by two types of two-tier networks – microcell tier (BS-to-device communication) and
device tier (D2D communication). In this thesis we are more concerned with the Device-to-
Device (D2D) communication or device tier. The directness of the device tier communication
provides many security and privacy concerns over a potential attacker mainly because of the
lack of a operator control in the form of a base station. Since user data is transmitted and
routed between various devices, this requires security (and privacy) to be maintained. A pos-
sible solution for this is to close access for the devices that want ot operate in the device
tier [Tehrani et al., 2014]. More specifically this means that a device has a list of "trusted"
devices and the excluded devices (and potentially malicious devices) must use the microcell
tier (BS-to-device) to communicate, where there is added security. There is also a possibility
for the "trusted" devices to set up a proper encryption amongst each other to avoid threats
like eavesdropping, Man-in-the-Middle (MITM) attacks etc. The technical details of how one
can either encrypt devices within a device tier communication, and setup of a closed access
D2D will not be covered by this thesis, but an example of this can be found in [Yue et al.,
2013]. This report proposes the "Secrecy-based Access Control for D2D communications for
cellular networks (5G)", and is a possible option for addressing security issues with device tier
communication.

www.manaraa.com

CHAPTER 3. UMLSEC 32

3.3.2 BLE Security

We mentioned that a form of D2D communication within IoT is through Bluetooth, and
specifically the most current version labeled BLE. The default attacker is perfectly capable
of targeting the wireless connection between devices, so therefore a requirement for D2D
communication is to protect the links through a form of encryption. Bluetooth, like many
D2D communication technologies is sustainable to several wireless networking threats and
vulnerabilities like eavesdropping, MITM, Denial of Service (DoS) attacks etc. So to improve
the security for Bluetooth and BLE, it is highly recommended to use the strongest Bluetooth
security mode available.

There exist specific security modes for specific Bluetooth version. However for our use case
and for this thesis we are mostly concerned with Bluetooth Low Energy (BLE) (i.e. intro-
duced in Bluetooth version 4.0 and updated in 4.1, 4.2). BLE is recommended to use the
Security Mode 1, Level 4 [Padgette et al., 2017], and this is the strongest mode because it
requires authenticated low energy secure connections pairing with Elliptic Curve Diffie Hell-
man (ECDH) based encryption. To briefly describe the other security modes and levels, we
have Security Mode 1, Level 3 that requires authenticated pairing and encryption but does
not require the ECDH-based cryptography and this limits the protection from eavesdropping.
Other security modes/levels allow unauthenticated pairing, which means no protection from
e.g. MITM attacks etc. provided during the cryptographic key establishment. These modes
vary depending on the Bluetooth specification version for the related device, so it is highly
recommended to use the most secure security mode available.

To give an overview of the security modes and levels available for BLE, we can look at Tables
3.3 and 3.4. Security Mode 1 visualizes the multiple levels that are associated with encryption,
while the Security Mode 2, shows the multiple levels associated with data signing.

Level Security Requirement

L1 Specify no security (i.e. no authentication and encryption)
L2 Requires unauthenticated pairing with encryption
L3 Requires authenticated pairing with encryption
L4 Requires authenticated communications with data signing (BLE ver. 4.2)

Table 3.3: Encryption-related levels of BLE Security Mode 1

Level Security Requirement

L1 Requires unauthenticated pairing with data signing
L2 Requires authenticated pairing with data signing

Table 3.4: Data-signing-related levels of BLE Security Mode 2

www.manaraa.com

CHAPTER 3. UMLSEC 33

3.3.3 Conclusion

We have therefore established that for 5G, the device tier communication in its raw form is
not very secure, but that there are configurations and measures one can account for to fix and
improve this. With this in mind we can enclose that by adopting these security measures,
either encryption, closed access and/or secrecy based access control for 5G networks we can
achieve a «secure 5G», for which in our threat scenario is more safeguarded and a better
option to pure 5G cellular communication, at least in terms of adversary capabilities.

For Bluetooth and specifically BLE, we have established that the best way to provide secure
D2D communication is through the use of the most recommended security mode and level,
and for BLE ver. 4.2 this is the Security Mode 1, Level 4 that provides the best security.
However for the other versions of BLE Security Mode 1, Level 3 is sufficient, but will not
guarantee the best security. This may however be the highest available security mode and
level for certain versions of BLE. For the use case for the demonstration and for our threat
scenario we merely enclose the highest and recommended security mode and level generically
as «secure BLE». In other words, when we refer to "secure BLE", for BLE ver. 4.2 this is
Security Mode 1, Level 4, and for other BLE ver. <4.2, this is the Security Mode 1, Level 3.

Therefore we have adopted the specified adversary abilities for the default attacker depicted in
Fig. 3.3, and from this added communication links and analyzed potential adversary capabil-
ities for specifically IoT systems and devices to define a domain-specific defaultIoT adversary.
This new adversary scenario is the one we will use to validate and enforce security requirements
for in Chapter 6.

Stereotype ThreatsdefaultIoT ()

«Internet» {delete, read, insert}
«5G» {delete, read, insert}
«BLE» {delete, read, insert}

«secure 5G» {delete}
«secure BLE» {delete}
«encrypted» {delete}

«LAN» ;
«wire» ;

Table 3.5: Threats from the defaultIoT attacker for ThingMLsec

www.manaraa.com

Part III

Design

34

www.manaraa.com

CHAPTER 4
UML Profile Extension

We have established in Chapter 3 that UML provides extension mechanisms to allow mod-
elers to extend the modeling language without actually changing the underlying modeling
language, and that there are several types of such stereotypes. The main idea is to use these
extension mechanisms to further define new concepts. In this section, the goal is to group
these extensions into a profile. [Rumbaugh et al., 2010] defines a profile as a "coherent set
of extensions applicable to a given domain or purpose". We also mentioned the extensions
mechanisms; stereotypes, tags and constraints that are used by UMLsec to extend the UML.

The fundamental premise of profiles is that the domain-specific concepts are derived as ex-
tensions of existing UML concepts. Therefore the goal with this chapter is also to try and
determine exactly which of the UML concepts are to be extended through extensions and with
what type of information.

4.1 Background

Since we don not want to "reinvent the wheel", we merely adopt UML and tailor it to our
needs – which are to enforce security requirements at the designing and specification level with
UMLsec. The way to do this is through the profile mechanism of UML, which is the focus for
this part of the thesis.

4.1.1 UML Profiling

The current evolving complexity of systems require new and better design paradigms and
approaches. One way of doing this is by separation of concern in the field of model-based
engineering, where the idea is specialization of technologies has led to the development Do-
main Specific Modeling Language (DMSL) [Gérard, 2011]. The idea is that the DMSLs (i.e.
UMLsec) provide certain constructs that are relative to the concepts of the domain in ques-
tion (i.e. security). Currently many systems are being modeled using the general purpose

35

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 36

languages, like UML. The main reason behind this is the availability of tools, documentation
of the language and training material for the languages, and finally the availability of experts
and expertise. For others, the use of general purpose languages comes down to the limited
risks and costs connected to them. Most domain-specific program libraries are developed and
used, written in general purpose languages. However the downside of this method is that the
tools are not domain-oriented, leading to external tools – sometimes automated – like com-
pilers, not being able to recognize and take advantage of the domain-specific knowledge. An
example of this is when domain-specific libraries lack compilers or other testing tools, then
the benefit and use of this approach is therefore limited, and eventually the usefulness of using
model-based engineering for designing complex systems is limited.

One important advantage of using UML profiling is that the language can be defined in such
a manner that it is suitable to a specific problem. However UML specifically, provides the
concept of profile allowing us to derive domain specific modeling languages for from its set
ot general purpose language concepts. The main and most important advantage of this is
that it allows us to reuse existing UML modeling tools and naturally the expertise available
for the modeling language. The other advantage of UML profiling, in comparison to using a
different general purpose modeling language, is that the most of the domain-specific modeling
languages for UML share a common semantic and syntactic foundation. For example, the
concepts for package, composition, property etc and also the basis notations of object, class
and interface. The common UML concepts are also common to many disciplines.

The profile is defined as a package identifying the subset of an existing base metamodel, and
defining stereotypes and constraints that may be applied to the metamodel subset. An example
of this is the stereotype of«Internet» extending the existing base metaclass of "Communi-
cationPath". The intention is to make an extension to the UML metaclass and specifically to
the model element of "Communication Path" to tailor it to a specific domain and application,
which in this case is secure systems development using UMLsec.

4.2 Well-formedness Rules of UMLsec

We previously mentioned in chapter 3 that the UMLsec stereotypes can be grouped into
various kinds of stereotypes; security assumptions, security assumptions and security policies.
The idea is that the sterotypes define new types modeling elements extending existing classes
in the UML metamodel. The Secure Systems Development with UML book [Jürjens, 2005]
provides a complete list of the various stereotypes, tags and constraints available in UMLsec,
in figure 4.1 (stereotypes and constraints) and figure 4.2 (tags).

Based on these definitions of the stereotypes in UMLsec depicted in the figure 4.1, we first need

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 37

Figure 4.1: Stereotypes, tags and constraints in UMLsec [Jürjens, 2005, p. 51]

to understand the essential groups (i.e. Base Class, Tags and Constraints columns) and what
they reveal about each stereotype. Because the definition of a stereotype must be consistent
with the syntax and semantics of the UML metaclass it extends, we will look further into how
the UMLsec defines its stereotypes and therefore the metaclasses they should extend during
the process UML profiling.

4.2.1 Base Class

There are 5 (five) distinct base classes listed for each stereotype in UMLsec, and they are
subsystem, link, node, dependency and object. To further understand what these base classes
are and what purpose they have, we need to explain their role in the construction of a profile
extension and specifically which metaclasses they should extend.

Subsystem

With a subsystem, we talk about grouping of model elements that represent a decomposed unit
within a physical system. The list of stereotypes in Fig. 4.1, was listed when the current UML
version was UML 1.5, and further defined subsystems as certain type of packages. Subsystems
also integrate the different kinds of diagrams and between different parts of the specification
of the system. It is worth mentioning that a subsystem modeling of the complete system, not

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 38

merely a part, is called a system [Jürjens, 2005]. It is also possible to group parts of a model,
that are represented by diagrams, into a package. In our profile extension based on the current
version of UML 2.0, subsystems will therefore be identified as packages and extend the UML
metaclasses of Package and Model.

Link

In UMLsec we mostly talk about links with regards to deployment diagrams, where nodes
(displayed as boxes) are connected by solid lines representing communication links. Therefore
within our profile extension, links will be the association between nodes that represents and
extends the UML metaclass of Communication paths.

Node

The third base class is node. Similar to links, we talk about nodes in regards to deployment
diagrams, where a node is defined as a run-time resource, like a computer or device etc. As
previously mentioned, a node is displayed as a box, which can be connected by communication
links. A node may also contain components that as displayed as rectangles, with two smaller
rectangles on the left side.

Dependency

With dependency we talk about relationship between two model elements. [Rumbaugh et al.,
2010] describes the various types of dependency relationships as; realization, usage, trace, re-
finement, and binding. Dependecy relationships can be between model elements in component,
class or deployment diagrams.

Object

An object is "an instance of a class – that is, an individual with identity whose structure and
behavior are described by the class" [Rumbaugh et al., 2010]. A class is a description of a
set of objects, that share attributes, operations, methods etc. We can conclude that the base
class of object therefore extends the UML metaclass of Class.

Summary

We have established that the 5 (five) base classes in the definition of stereotypes listed in
figure 4.1. UML has many metaclasses, but the aforementioned five base classes represent the
UML metaclasses that are to be extended by the stereotypes in the same figure. So now we
can for example say that for the stereotype of «fair exchange» will extend the metaclass of
Package or Model, since we have established that "subsystem" is a type of package, or model
in UML 2.0.

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 39

4.2.2 Stereotypes, Tags & Constraints

The complete list of UMLsec tags in Fig. 4.2 lists 7 (seven) distinct stereotypes and their
respective tags. To further understand the function of each of these tags, it is best to explain
them from the perspective of their stereotypes, including all other related stereotypes.

Figure 4.2: Tags in UMLsec [Jürjens, 2005, p. 52]

«fair exchange» (for use case diagrams)

This stereotype applied to use case diagrams, represents the security requirement that any
transaction should be performed in a way that prevents any two given parties, from cheating.
However this stereotype, as opposed to the other stereotypes has an informal meaning. It
mostly serves as an example of how we can use certain multiple stereotypes on multiple types
of diagrams (e.g. use case diagrams and activity diagrams).

«fair exchange» (for activity diagrams)

With relation to acitivty diagrams, the «fair exchange» stereotype also assures that the
trade is performed fairly. However in this case, we can use the tags {start}, {stop} and

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 40

{adversary}. The {start} and {stop} have to at least specify the state (i.e. name). The
{adversary} on the other hand, specifies an adversary type relative to the security require-
ment. The constraint for the associated stereotype and respective tags is that whenever a
{start} state is reached within the activity diagram, then the {stop} state will eventually
be reached, whenever the system is executed in the presence of an adversary specified the tag
{adversary}.

Tags Type Multipl. Description

{start} state * start state(s)
{stop} state * stop state(s)

{adversary} adversary model 1 adversary type

Table 4.1: Associated tags for «fair exchange»

«secrecy», «integrity», «high»

These particular stereotypes are used to label dependencies of objects or subsystems in the
static structure or component diagrams (i.e. class, deployment etc.). They represent the
dependencies that are supposed to provide the respective security requirements (secrecy, in-
tegrity or protection of high-level messages) for the data sent along them either as arguments
or return values for operations or signals. Moreover these stereotypes are used in the constraint
for the stereotype «secure links».

«provable»

A subsystem (e.g. model or package) S may be labeled with the stereotype «provable» using
the tags {action}, {cert} and {adversary}. The {cert} tag consists of an expression that
acts as a proof that the action provided by the tag {action} was performed. The {adversary}
also specifies an adversary type relative to the security requirement. The constraint of the
stereotype therefore specifies that S may output the expression (i.e. proof) given in {cert}
only after the state with the {action} is reached, whenever the system is executed in the
presence of an adversary specified the tag {adversary}.

Tags Type Multipl. Description

{action} state * provable action
{cert} expression E * certificate or proof of action

{adversary} adversary model 1 adversary type

Table 4.2: Associated tags for «provable»

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 41

«rbac» (for activity diagrams)

To enforce the security policy of role based access control, we may use the corresponding stereo-
type «rbac» and the associated tags {protected}, {role} and {right}. The {protected}
holds the state(s) within the activity diagram for which the access is to be controlled. The
{role} specifies its value in form of the pair (actor, role), whereby the actor is the actor in
the activity diagram and the role likewise. The {right} also has its values in form of pair(s)
(role, right), where role is role, and right is for the right to access the protected resource. The
constraint for the stereotype requires that the actors in the diagram only perform activities
that they have appropriate rights for. The formalization of this can be explained as follows;
for a given subsystem S and every actor A in S, and every activity a in the swimlane of A in
the subsystem of S, there exist a role R making the value of {role} (A,R) and the value of
{right} (R, a).

Tags Type Multipl. Description

{protected} state * protected resources
{role} (actor, role) * assign role to actor
{right} (role, right) * assign right to role

Table 4.3: Associated tags for «rbac»

«critical»

The stereotype of «critical» may be used on subsystems (i.e. models, packages) or objects
(i.e. class(es)) to specify that the data in contained within the instances are critical in some
manner. The corresponding tags are {secrecy}, {integrity}, {authenticity}, {fresh}
and {high}. The tag {secrecy} is the name of the expression(s), attribute(s) or message
argument variable(s) of the object to which the secrecy or confidentiality is to be protected. It
is also possible to provide the name of the operation for which its arguments and return values
are to be confidential or kept secret. The tag {integrity} consists of a pair of values (v,E),
where v is the variable of the object to be protected, and E is a set of acceptable expressions
that may be assigned to v. For {authenticity} you have the pair of values (a, o) where a

stores the data whose authenticity should be provided and o stores the origin of that data.
The {fresh} holds atomic data – data that is isolated and occurs once without interruption
(thus preserving the freshness security policy) – that should be freshly generated.

These constraints are enforced by the constraints of «data security» stereotype, which by
labels the subsystems that contain the «critical». The {high} tag holds the message(s) (i.e.
the name(s)) that are supposed to be protected with respect to the security policy of secure
information flow, which is furthermore enforced specifically by the «no down-flow» and «no

up-flow».

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 42

Tags Type Multipl. Description

{secrecy} data * confidential data
{integrity} (variable v, expression E) * integrity of data

{authenticity} (data a, origin o) * authenticity of data
{high} message * high-level messages to be protected
{fresh} data * data to be freshly generated

Table 4.4: Associated tags for «critical»

«Internet», «encrypted», «LAN», «wire», «smart card», «POS device», «issuer node»

The stereotypes on links and nodes (figure 4.1) in deployment diagrams denote the various
types of communication links and nodes. It is required that each link holds at most one of
the listed stereotypes in UMLsec.

s 2 {«wire», «encrypted», «LAN», «smart card»,

«POS device», «issuer node», «Internet»}
(4.1)

For every single adversary type A, UMLsec defines a function ThreatA(s) from each stereotype
in 4.1 to a set of strings ThreatA(s) ✓ {delete, read, insert, access} under the following
conditions:

node 2 s =) threatsA(s) ◆ {access} (4.2)

link 2 s =) threatsA(s) ◆ {delete, read, insert} (4.3)

To further explain these conditions expressed as formulas (4.2 and 4.3), we can simply say
that the ThreatA(s) function specifies which kind of actions an adversary of type A ca apply
to the nodes. To express it in a different manner, we can explain the first condition 4.2 as
that if a given stereotype s (see 4.1) is for a node type, then the adversary type A can do
harm by gaining access. The same applies for the second condition 4.3, except the adversary
can do harm through the capability of delete, read, and insert.

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 43

«secure links»

Tags Type Multipl. Description

{adversary} adversary model 1 adversary type

Table 4.5: Associated tags for «secure links»

The «secure links» stereotype for labeling subsystems, has the purpose to ensure that
the security requirements on the communication are met by the physical layer (e.g. de-
ployment diagrams). Like many other stereotypes, «secure links» also specifies the ad-
versary type using the {adversary}. To provide more detail on the constraints of the
stereotype, we say that for a subsystem S and for each dependency d with the stereotype
s 2 {«secrecy», «integrity», «high»} between subsystems/objects on different nodes n, m,
we have a communication link l between n and m such that:

s(«high») =) threatsSA(l) = ; (4.4)

s(«secrecy») =) read /2 threatsSA(l) (4.5)

s(«integrity») =) insert /2 threatsSA(l) (4.6)

To explain the three constraints enforced by the «secure links», equation (4.4) states that
for any dependency with the stereotype of «high», the threat from the default adversary is
supposed to be non-existent. Meanwhile the constraint equation (4.5), states that the atomic
action/threat of read, should not exist as a threat for any dependency with the stereotype
of «secrecy.» The last equation and condition (4.6) states that the atomic action of insert,
should not exist as a threat for any dependency with the stereotype of «integrity».

Example: Given the subsystem labeled with the stereotype of «secure links» in Fig. 4.3, and
the default adversary on Fig. 3.3 on page 30. This model is in violation of the conditions for the
«secure links» expressed in equation (4.5). Specifically the link between the ClientNode and
ServerNode does not provide communication secrecy against the default adversary. According
to the Threatsdefault(Internet), the communication link between the client and server does
not provide the required security level. The reason is simply that communication via Internet
does not provide secrecy against adversaries (default). We therefore get the following:

s(«secrecy») =) read 2 threatsRemoteAccessDemo
default (Internet)

To improve the model, so that it is not in violation to the condition expressed in equation

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 44

Figure 4.3: Example of «secure links» usage

(4.5), we can improve the RemoteAccessDemo subsystem with the following Fig. 4.4. The
communication between client and server now provides secrecy against the default adversary,
and therefore provides the necessary security level according to the Threatsdefault(Internet).
We therefore get the following expression:

s(«secrecy») =) read /2 threatsRemoteAccessDemo
default (encrypted)

Figure 4.4: Example of valid «secure links» usage

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 45

«secure dependency»

This stereotype, meant for subsystems containing static structure (e.g. class diagrams) en-
sures that the dependencies of «call» and «send» across objects or subsystems respect the
security requirements on the data communicated across them together with the {secrecy},
{integrity} and {high} tags associated with the «critical» stereotype. To elaborate fur-
ther on the constraint for this stereotype; if there is a «call» or «send» dependency from an
object or subsystem C to an interface I of an object or subsystem D, then we need to fulfill
the following conditions:

msg(n) 2 I ^msg(n)C 2 {tagscritical} =) msg(n)D 2 {tagscritical} (4.7)

where tagscritical denotes the tags of either {secrecy}, {integrity} or {high}

msg(n) 2 I ^msg(n)C 2 {tagscritical} =) dep(stereotypescritical)
C (4.8)

where stereotypescritical denotes the stereotypes of either «secrecy», «integrity», or «high»,
and dep for dependency.

To explain the two constraints enforced by the stereotype of «secure dependency» expressed
in as conditions within the equations (4.7) and (4.8). Firstly the conditions states that for
any message n contained in the interface I, if the message n appears in the tag of {secrecy},
{integrity} or {high} within the object (i.e. class) of C, then should also appear as a tag
in within the object of D. The second condition (4.8) states that if the message n appears in
the interface I also appears in the tags of {secrecy}, {integrity} or {high} within C, then
the dependency should be stereotyped with the respective stereotype of either «secrecy»,
«integrity», or «high».

Figure 4.5: Example of «secure dependency» usage

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 46

Example: Given the subsystem labeled with the stereotype of «secure dependency» in Fig. 4.5.
This subsystem provided by [Jürjens, 2005], show a key generation subsystem, labeled with
the stereotype «secure dependency». This model is in violation of the conditions for the
«secure dependency» expressed in equation both (4.7) and (4.8). This is because neither the
«call» dependency nor the RandomGenerator provide the necessary security level required
by the KeyGenerator. The random() message is required to be of high level by the KeyGen-
erator, but it is not required of equal level by the RandomGenerator. RandomGenerator is
therefore required to have the {high} tag assoicated with the «critical» stereotype. Lastly
the dependency of the «call» dependency is also required to be stereotyped «high» as ex-
pressed by (4.8). The proper use of the «secure dependency» stereotype is expressed by the
Fig. 4.2.2.

Figure 4.6: Example of valid «secure dependency» usage

«data security»

This particular stereotype ensures that security is enforced on the behavior level. Firstly, this
stereotype for label subsystems has the following constraint: The behavior of the subsystem
respects the security requirements given by the «critical» stereotype and associated tags,
contained within a subsystem with respect to the threat scenario arising from the deployment
diagram. This constraint is given by the following four conditions:

• Secrecy : The subsystem preserves the secrecy of the data appointed by the {secrecy}
tag against the adversary type A.

• Integrity : The subsystem preserves the integrity of the data appointed by the {integrity}
tag, against the adversary type A.

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 47

• Authenticity : The subsystem preserves the authenticity of any value (data a, origin o).
More specifically the authenticity of the attribute a, with respect to its origin against
the adversary type A.

• Freshness: Given a subsystem S stereotyped «data security», the following condi-
tions apply for any instance of a subsystem model or object model D within S, stereo-
typed «critical» for any value data associated with the {fresh}:
data occurs within S at most in:

i. Static structure diagrams: The instance of a subsystem or object model representing
D contained in S.

ii. Activity diagrams: The swimlanes belonging to D contained in S.

iii. Statechart diagrams: The models parts of the behavior of D contained in S

iv. Sequence diagrams: D’s part of the connections in the digram contained in S.

In other words, it is sufficient for the data to be listed with a security requirement one of the
object or subsystem instances contained within the «data security» subsystem to fulfill the
aforementioned conditions.

The properties of the first three conditions (secrecy, integrity and authenticity) are then rela-
tive to the considered adversary type. Moreover in each of these cases, it is presumed that the
initial knowledge of the default adversary (see Fig. 3.3 on page 30) not to contain the data
values that according to the tags of the «critical» stereotype should be guaranteed secrecy,
integrity or authenticity. Additional assumptions on the initial adversary knowledge can be
specified, since the security requirements (secrecy etc.) cannot be achieved if the adversary al-
ready knows this data initially. So, in case the intended origin of the data in the {integrity},
{secrecy}, or {authenticity} refer to the expressions not locally known to the «critical»

subsystem or object where these tags are applied, one can also associate these tags with the
relevant «data security» stereotypes.

Another important note, associated with the conditions of the «data security» stereotype is
that the considered system might be part of a larger system. The aforementioned conditions
only assure that the component under consideration keeps the values received by the environ-
ment secret (or abide the other security requirements). Therefore we also need to make sure
that the environment, specifically the rest of the system apart from the the component under
consideration does not make these values available to the adversary (or violate the constraints
of other applied security requirements). Note that the verification of the «data security»

constraint is not so trivial, and is not completely covered within this thesis. Therefore for

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 48

a more detailed explanation and examples, all the needed information can be found in the
book "Secure Systems Development" by [Jürjens, 2002], which these security concepts where
introduced.

Tags Type Multipl. Description

{adversary} adversary model 1 adversary type
{integrity} (variable v, expression E) * integrity of data

{authenticity} (data a, origin o) * authenticity of data

Table 4.6: Associated tags for «data security»

«guarded access»

This stereotype, intended for subsystems expresses that the object (i.e. class) that is stereo-
typed «guarded», should only be accessed through the objects specified by the tag {guard},
which in turn are attached to the «guarded» object.

«guard»

This particular stereotype is used to label objects (i.e. classes, interfaces) specifically in the
scope of the «guarded access», that are supposed to be guarded. The stereotype has a tagged
value {guard}, which defines the name of the corresponding object.

Tags Type Multipl. Description

{guard} object name 1 guard object (i.e. class or interface)

Table 4.7: Associated tags for «guarded»

4.3 Conclusion

This section will provide more details on how we can apply the well-formedness rules onto
stereotypes, tags and constraints for constructing a profile to extend the metalanguage of
UML. Hence, we now know which model elements we can apply the stereotypes, tags and
constraints on, but we now proceed to looking specifically at diagrams.

4.3.1 Diagrams & Model Elements

The well-formedness rules of UMLsec help to showcases the model elements of UML (i.e.
Class, Component, Package etc.) can be utilized for which exact stereotypes, and therefore
which tags and constraints. The base classes, previewed by [Jürjens, 2005] and visualized on
Fig. 4.1, essentially describe the existing UML meta-elements which the given stereotypes
match. An example of this is the «Internet» corresponding to the base class of Link, which

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 49

Figure 4.1: Categories of UML 2.0 Diagram Types. [Nishadha, 2012]

easily tells us which UML element the stereotype can be applied and labeled onto. This is
the basis for how we construct the ThingMLsec profile by extending the UML-metalanguage
using extension mechanisms based off the well-formedness rules of UMLsec.

UML modeling constructs can arguably be divided into two major areas and diagram types
(i.e. Structural and Dynamic Behavioral), and so provide a structured view of the exact model
elements or diagrams. We have also divided the diagrams into Structural and Behavioral dia-
grams types. It is notable to mention that there is no clear distinction between the constructs,
but this is how they are often divided for convenience and guidance of use. The distinction
of views that we choose to follow is the Fig. 4.1. Certain model elements like package, de-
pendencies and communication paths are used for several types of diagrams, and therefore
the various stereotypes can also be applied to several types of diagrams. Previously in this
chapter we described the base classes. These are specified in the table overview of stereotypes,
and we shall now explain the various stereotypes according to their diagram types below as
summarized in Table 4.1.

Package

For the Package diagrams we can apply the stereotypes of «fair exchange», «rbac», «secure
links», «secure dependency», «guarded access», «data security», «no down-flow» and
«no up-flow». Since both behavioral and structural diagrams can be contained within pack-
age diagrams, the aforementioned (at least some) can be applied either one of the diagram
types or even both.

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 50

Ta
bl

e
4.

1:
T

hi
ng

M
Ls

ec
St

er
eo

ty
pe

s
an

d
U

M
L

2.
0

D
ia

gr
am

s

«f
ai
r
ex
ch
an
ge
»«p

ro
va
bl
e»

«r
ba
c»«I

nt
er
ne
t»«e

nc
ry
pt
ed
»

«L
AN
»

«w
ir
e»

«5
G»

«B
LE
»«a

ct
ua
to
r»

«s
ec
re
cy
»

«i
nt
eg
ri
ty
»

«h
ig
h»«c

ri
ti
ca
l»

«s
ec
ur
e
li
nk
s»

«s
ec
ur
e
de
pe
nd
en
cy
»

«d
at
a
se
cu
ri
ty
»

«n
o
do
wn
-f
lo
w»

«n
o
up
-f
lo
w»

«g
ua
rd
ed

ac
ce
ss
»«g

ua
rd
ed
»

Structural

C
om

po
ne

nt
–

–
–

–
–

–
–

–
–

–
X

X
X

X
–

X
–

–
–

–
–

D
ep

lo
ym

en
t

–
–

–
X

X
X

X
X

X
X

X
X

–
X

X
–

–
–

–
–

–
C

la
ss

–
–

–
–

–
–

–
–

–
–

X
X

X
X

–
X

–
–

–
–

X
Pa

ck
ag

e
X

X
X

–
–

–
–

–
–

–
–

–
–

X
X

X
X

X
X

–
–

O
bj

ec
t

–
–

–
–

–
–

–
–

–
–

X
X

X
X

–
–

–
–

–
–

X

Behavioral

A
ct

iv
ity

X
X

X
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
U

se
C

as
e

X
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
Se

qu
en

ce
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

X
X

–
–

St
at

e
M

ac
hi

ne
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

X
X

–
–

X
=

A
p
p
li
c
a
b
le

;

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 51

Deployment

For deployment diagrams, we use «secure links» to ensure that the security requirements
(i.e. security assumptions) on the communication dependencies are supported by the physical
description. Since deployment diagrams contain nodes, communication links and dependen-
cies, we can use the UMLsec stereotypes specific for those model elements. For nodes we can
use the «LAN», «smart card», «POS device» and «issuer node». However for this thesis
and appliance to IoT some of the UMLsec stereotypes associated with nodes, were not aligned
or relevant to this, so all stereotypes (i.e. for nodes) except for the «LAN» stereotype where
excluded in the ThingMLsec profile.

For the communication links the UMLsec stereotypes of «Internet», «wire», «encrypted»,
«LAN» can be used for this diagram type. Furthermore to adopt the UMLsec approach for
IoT and the use case we extended the stereotypes with «5G» and «BLE» in our profile. Since
dependencies are used to model relationships between given nodes and eventually objects
within the nodes, we can use the stereotypes related to dependencies which are «secrecy»,
«integrity» and «high». Lastly the «critical» can be applied to classes (i.e. objects),
components or interfaces, and therefore can also be applied within deployment diagrams.

Component

For Component diagrams, we use the «secure dependency» to ensure that the security re-
quirements in different part of a static structure diagram are consistent. To model the de-
pendencies (i.e. relationships) between various components, we may use the given UMLsec
stereotypes; «secrecy», «integrity» and «high». Like for deployment diagrams, we can also
use the «critical» stereotype.

Class & Object

In terms of Class and Object diagrams, we also use the «secure dependency» for consistency
within static structure diagrams, the same way as for Component diagrams. The Class and
Object diagrams can for the most part use the same stereotypes, for as we previously described;
an object is an instance of class, and they bot describe the static structure.

Activity & Use Case

As for the behavioral diagrams, there are very few steretypes that express the behavoioral
constraints in UMLsec. At least compared to the structural diagrams. Firstly, for the Activity
diagrams we can apply and enforce the stereotypes of «fair exchange», «provable» and
«rbac». These security policies constraint the behavior of Activity diagrams.

www.manaraa.com

CHAPTER 4. UML PROFILE EXTENSION 52

Sequence & State Machine

The Sequence and State machine diagrams can be labeled with the same stereotypes. Both
stereotypes express the secutiry policies of «secure information flow» and are «no down-flow»

and «no up-flow». Similar to the the other behavioral diagrams, these stereotypes essentially
express the semantic behavioral constraints.

www.manaraa.com

CHAPTER 5
UMLsec Profile Construction

We have now defined the rules with regards to the extension mechanisms and constructed
our own profile shown in the figure 5.1. To summarize, the ThingMLsec is a profile diagram
that operates at the metamodel level of UML by extending the base metaclasses of UML (e.g.
Model, Node, Class etc.), with stereotypes as classes, marked with the «stereotype» label.
The relationship between the metaclasses of UML and the stereotypes, are visualized with the
help of the extension relation indicating which stereotype(s) the metamodel element/class is
extending. The intention behind this is to use the ThingMLsec to label all standard UML 2.0
model elements, appearing as if it is a part of the UML metamodel.

5.1 Tool Support

The important part of constructing the UML profile is determining the tool to use for this
purpose. In this section we look at the alternative tools and why they weren’t used for
constructing ThingMLsec.

The idea was always to use tools that allow us to complete our goal – i.e to define and apply
a UML profile. And since the success of our goal determined so heavily on the capabilities of
the tool, an important task was to find and compare the different tools available, and based on
our needs, further select the most suitable tool. We chose to define and apply our ThingMLsec
profile using Papyrus UML, but before doing so we weighed the following requirements1 that
the tool needed to meet.

1The order of the requirements are arranged by importance. (RQ1 = most important etc.)

53

www.manaraa.com

CHAPTER 5. UMLSEC PROFILE CONSTRUCTION 54

Fi
gu

re
5.

1:
T

he
C

om
pl

et
e

T
hi

ng
M

Ls
ec

P
ro

fil
e

www.manaraa.com

CHAPTER 5. UMLSEC PROFILE CONSTRUCTION 55

Req. Requirement Description

RQ1 Requires UML2 support.
RQ2 Requires UML profile support.
RQ3 Requires OCL support.
RQ4 Requires tool to be open source and free.
RQ5 Requires possibility for Eclipse IDE integration.

Table 5.1: Requirements for the selection of UML tool

5.1.1 Papyrus

Papyrus2 is an Eclipse graphical editing tool for UML2. It is free and open source, and also
available as an Eclipse-plugin as part of the Model Development Tool (MDT) project. One of
it’s greatest feature is that it provides extensive support for UML profiles. The tool includes
all the facilities for defining and applying UML profiles in a rich and efficient manner, and it
succeeds in implementing for UML as complete as possible (e.g. supporting latest diagram
types). The tools also provides powerful tool customization capabilities similar to DMSL-like
metatools. Papyrus enables us to use a general purpose language (i.e. UML2), but also DMSL
approaches through profile mechanism (i.e. ThingMLsec).

5.1.2 Alternatives

There are a lot of commercial and open-source tools that are available for UML modeling, and
amongst these we have ArgoUML, MagicDraw, Papyrus, Modelio etc. During this subsection,
we look at some of the most popular modeling tools today, and assess how they fulfill the
given requirements.

MagicDraw

MagicDraw3 is a commercial, award-winning business process, architecture, software and sys-
tem modeling tool. It is designed for many different software users (e.g. designers, architects,
developers etc.), for many different purposes. MagicDraw is a dynamic and versatile devel-
opment tool with extensive support for many programming languages. It comes in different
editions for specific users, enriched with many features, and through it is commercial, like
most commercial software it can also be downloaded as a trial version for a limited amount
time. MagicDraw fulfills all the requirements we have, like support for UML2 modeling, OCL
and the possibility to be integrated with Eclipse.

2
https://www.eclipse.org/papyrus/

3
https://www.nomagic.com/products/magicdraw{#}overview

https://www.eclipse.org/papyrus/

www.manaraa.com

CHAPTER 5. UMLSEC PROFILE CONSTRUCTION 56

Modelio

Modelio4 is an open source modeling environment which has the possibility to be extended
through models in order to add functionalities and services. As many modeling tools today,
it supports UML2, including other standards like BPMN2, SysML etc. However the tool does
not support OCL, but it does allow to add constraints as part of UML to achieve a similar
outcome. Lastly the tool has the possibility to be integrated with Eclipse.

ArgoUML

ArgoUML5 is an open source modeling tool, that supports all standard UML 1.4 diagrams.
The tool runs on any Java platform and is available in 10 languages. The tool allows for
profile support with even some profiles already provided by the tool. ArgoUML also supports
constraints using OCL. The integration support (Eclipse) is not so clear to see, from the
website, or the tool itself.

During the use and testing of the tool, we noticed that the UI seemed very outdated, indicating
that the tool had not been maintained for a while. This would also explain the lack of UML 2.0
diagrams. Although the tool was stable under use, the fact that it had not been maintained
and the last stable version was last updated in 2011, is quite concerning. This implies that
the tool will probably no longer be safeguarded to new threats, or provide new features to
improve the usability and such. And even if we could integrate the tool with Eclipse IDE, this
remains a potential problem – i.e. to integrate an outdated software with a well maintained
one.

5.1.3 Conclusion

We chose to use Papyrus for defining and applying UMLsec, because of the requirements we
had on beforehand, and that we needed the tool to satisfy for us, to be able to complete the
task. During the assessment process we found that some of the other tools had many useful
features beyond our requirements, but some sadly did not meet the requirements needed to
be able to implement ThingMLsec.

The summary of the results are depicted in the table shown in Fig. 5.2. The table shows not
only the requirements we initially set prior to the selection process (i.e. RQ1-RQ5), but also
other requirements that where added to further determinate which tool would ultimately suit
the purpose. RQ6 and RQ7 are based on an extensive comparison case study by [Safdar et al.,
2015], and finally RQ8 shows how well the tools have been maintained and improved lately.

4
https://www.modelio.org/about-modelio/features.html

5
http://argouml.tigris.org/features.html

https://www.modelio.org/about-modelio/features.html
http://argouml.tigris.org/features.html

www.manaraa.com

CHAPTER 5. UMLSEC PROFILE CONSTRUCTION 57

The first requirement RQ1 is not met but ArgoUML, possibly due to lack of new updates of
the tool. And since this was the most important requirement, we had to eliminate the tool
from the selection process. The second requirement, RQ2 was met by all tools, but Modelio
provides UML profile support in form of modules. While this is not necessarily a drawback
it makes the method less intuitive for users already acquainted with most UML modeling
tools. The third requirement RQ3 was not met by the Modelio tool at all, which was the
main reason for elimination from selection. The fourth requirement RQ4 was not a crucial
requirement, but an open source and free tool which would provide a lower threshold for most
(i.e. organizations and other users) to try out the tool and approach. The only tool that did
not fulfill this requirement was MagicDraw, but this was not major delimiting factor or main
reason for not selecting the tool, since the tool has a 30-day trial version and provides many
great features.

Table 5.2: Comparison of UML tools

Requirement

Papyrus

M
agicD

raw

M
odelio

A
rgoU

M
L

RQ1: Requires UML2 support. #
RQ2: Requires UML profile support. G#
RQ3: Requires OCL support. #
RQ4: Requires tool to be open source and free. #
RQ5: Requires possibility for Eclipse IDE integration. -

RQ6: Effort required in use. - -
RQ7: Learnability. - -

RQ8: Last stable version 2017 2017 2018 2011
 = Provided; G# = Partially Provided; # = Not Provided;

5.2 ThingMLsec Profile

ThingMLsec is the a UML profile diagram, which defines extensions to the UML metamodel,
derived from the well-formedness rules of UMLsec together with added concepts for IoT sys-
tems development in order to adopt the metamodel to a specific domain. This profile diagram
is visualized in Fig. 5.1, where the UML metamodel is extended via stereotypes, which further
can have properties, referred to as tags or tag definitions. The only thing that is lacking is
the further application of formal constraints in OCL, which would have allowed to check the
validity and the consistency of any given model created using the profile.

www.manaraa.com

CHAPTER 5. UMLSEC PROFILE CONSTRUCTION 58

The benefits of using the ThingMLsec Profile:

B1: Expressiveness; we can enforce security requirements to any UML2 model available,
using a well-known and commonly used approach (ie. extension mechanisms).

B2: Selection freedom ; we have the ability to model security using any UML modeling
tool since most tools support UML profiles.

B3: Integration of modeling and analysis ; by adding OCL constraints in the ThingMLsec
profile, we can not only model, but also verify our models to eventually improve the se-
curity of our models.

B4: Improved maintainability ; the ThingMLsec as profile is defined as a package diagram
that can be constantly edited, improved and extended with new stereotypes and OCL
constraints.

B5: Tool support ; we can use, develop and or/integrate the ThingMLsec profile with other
tools, (i.e. by the help of Eclipse-plugins).

5.2.1 OCL

We can use the a profile to define constraints. Our ThingMLsec profile contains a condition
that is denoted as part of UML called Object Constraint Language (OCL) depicted in Fig.
5.1. OCL is essentially a textual general-purpose formal language adopted as a standard by
the Object Management Group (OMG) [Cabot and Gogolla, 2012]. OCL is a key element of
Model-Driven Software Engineering (MDSE). With OCL, we have the ability to define new
domain-specific languages using well-formedness rules, or express model transformations or
code-generation templates. It is used to define several kinds of expressions to complement the
information of UML models, and specifically complementing the models with model queries,
manipulation and specification requirements. Furthermore we can say that OCL is a typed,
declarative, and side-effect free specification language.

To further clarify, OCL is typed in the sense that each expression evaluates to a type (either
pre-defined or contained type in the model that OCL is being used) and must conform to
the rules and operations of that type. With declarative, in the sense that OCL does not
include imperative constraints like assignments, which is essentially describing what you want
to do and not how you want to do it. Side-effect free, in the sense that the OCL expressions
constrain the state of the system, but not alter it. Lastly, it is a specification language in the
sense that OCL does not include any implementation details or guidelines.

An example of how we can use OCL is by constraining elements in the UML metamodel. This
is done in the sense that we can constrain all Class instances to be active, or that all instances

www.manaraa.com

CHAPTER 5. UMLSEC PROFILE CONSTRUCTION 59

of Class are allowed at most one operation. The drawback is that for the constraints to be
automatically validated, we need to first rewrite them into a language that the Papyrus tool
is able to understand. For the specific tool of Papyrus this language is usually Java [Gérard,
2011]. Papyrus supports two ways of validating constraints that are applied to models., and
they are as following:

Profile Embedded OCL Constraints

This first method is a simple and straightforward way of defining constraints related to the
Papyrus tool, where we can define constraints directly into the profile, as expressed in Fig.
5.1. This method of defining a constraint allows us to define the constraint within the profile
itself, in contrast to defining and embedding constraints into a plugin. In the aforementioned
figure, we can see a snippet of a constraint that is taken from the complete ThingMLsec
profile in Fig. 5.1. In this constraint, we have created a Constraint Node, which is available
as part of the Palette (i.e. quickly accessible model elements) for the package diagrams. The
constraint, named "AdversaryIsSpecified" simply states that the adversary attribute, to which
it is connected to, must be not be empty. In other words that the adversary , should not be
of empty type string. More specifically, the constraint expresses the condition stating that
the stereotypes capable or allowed to specify the adversary type, must specify adversary type.
In Fig. 5.1, we can see that this constraint is referenced to the elements (i.e. stereotypes) of
«provable», «data security», «secure links» and «fair exchange».

Figure 5.1: ThingMLsec OCL Profile Constraint

Plugin Embedded OCL Constraints

This method on the other hand, is more complicated but yet more powerful than the latter.
Firstly it requires an additional extension for the Papyrus Modeling tool; Papyrus DMSL
Validation [Ericsson and Letavernier, 2018]. This method in particular allows us to generate
a plugin from a profile that embeds the constraints, expressed in either OCL or Java. Firstly,
OCL constraints are embedded into the plugin.xml file, while the Java constraints can be
directly complied into code. The constraints are grouped into a category that can be included
into the validation or not. Lastly, it is worth noting that one should not embed the constraints
both in the profile and the plugin. In other words, it is not recommended to select both options.

Previously in Chapter 3, we distinguished between three different ways of adding security
relevant information to diagrams. These specific groups, also defined as three types of stereo-

www.manaraa.com

CHAPTER 5. UMLSEC PROFILE CONSTRUCTION 60

types; (i.) security assumptions that describe the physical level of the system, (ii.) security
requirements that describe the logical structure of the system or specific data values, and
lastly (iii.) security policies that specify what parts of the system should obey. While security
assumptions and requirements simply add the information to the model and are applicable to
various model types, the security policies are have constraints that have to be fulfilled by the
diagram to carry the stereotype (e.g. «secure links», «secure dependency» etc.).

The idea specifically with embedding the OCL constraints into a plugin, we could automati-
cally verify the models with respect to the applied stereotypes and constraints. However, we
did not have sufficient time for this task, since understanding and using the tool had priority.

www.manaraa.com

Part IV

Application

61

www.manaraa.com

CHAPTER 6
The Application of ThingMLsec to ALCCS

The main idea is that once we demonstrate the use of ThingMLsec profile onto both a few
structural and behavioral diagrams, in order to express the capabilities of UMLsec and security
specification on models. Notice that the quality of the models is not the focus of the thesis.
They are from the project of SCOTT, and the main focus for the thesis and this particular
chapter is foremost the applicability of ThingMLsec onto the provided models and views.

The application of ThingMLsec will be demonstrated in the following way; we shall first apply
the stereotypes and then verify the constraints for the structural view and models, and after
that onto the behavioral view and models.

6.1 Proof of Concept

Before we start applying and verifying with ThingML, we shall first describe the provided use
case and scenario that will be used. This is specifically the behavioral diagrams (i.e. use case
and activity).

The "Use Case specification and System Architecture for Assisted Living" by [Brandsma,
2017], provides two distinct use cases, where one of them is "Patient Trend Monitoring" and
the other "Emergency Handling". The overall design and architecture will be for the entire
system, but the modeling of specific scenarios for behavior diagrams, will be for this use case.

6.2 Use Case Description

We wish to demonstrate the use and appliance of UMLsec using the use case of the Assisted
Living and Community Care (ALCCS) and specifically the use case of Emergency Handling.

62

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 63

6.2.1 Emergency Handling

The main idea with trust delegation is that we can locate the most appropriate person nearby
to give immediate care and providing that exact person access to enter the residents’ (e.g.
elderly users) home. In this case is by accessing a wirelessly controlled lock on the front door.
In addition to this, to also provide relevant data about the individual. [Brandsma, 2017]
depicts this in the form of Fig. 6.1.

Figure 6.1: Emergency Handling Use Case [Harrand et al., 2016]

Emergency handling is therefore about arranging the quickest and most appropriate care
when a patient experiences an emergency. To further clarify this we can envision the following
situation: An elderly person living alone, possibly suffering from dementia (e.g. mild), may
fall and experience trouble getting back up again, or eventually incapacitated in some way.
This situation could therefore be detected by (e.g.) using a panic button, a fall detector, or
by tracking the persons location and movement.

We will look further into a specific use case scenario for emergency handling, which is the
"Call for Help" scenario. This use case is described in full in table 6.1.

Use Case WP21 Assisted Living and Community Care

Scenario: Call For Help

Primary Actor: Resident

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 64

Actors and

Interests:

A1 Resident: Wants to get help from the most ap-
propriate trusted person in case of emergency.

A2 Caregiver: Wants to get information about the
emergency and access to the facilities to be able
to resolve it.

Description: This scenario describes a procedure of calling and dis-
patching the most appropriate Caregiver for help in
case of an emergency situation.

Trigger: The Context Reasoning System triggers the Call for
Help (i.e. a panic button push by the Resident is
handled through the Context Reasoning System as
well.) The Context Reasoning System has a prepared
list of Caregivers based on the contexts of Resident
and potential Caregivers.

Main Success Scenario:

1. The Edge System receives a Call For Help from the Context Reasoning
System, retrieves the prioritized list of Caregivers and sends an emergency
signal to the most appropriate Caregiver (i.e. top of the list)

2. The selected Caregiver receives the emergency signal, decides to accept
the call and to initiate a voice connection with the resident.

3. The Resident does not respond or the Resident responds and indicates
that he/she is an emergency situation (or setting up a voice call fails.)

4. The Caregiver indicates whether he/she can handle the emergency him-
self/herself.

a. If the Caregiver can handle the emergency: Execute Sub-scenario S1.
b. Else: Execute Sub-scenario S2.

Sub flows:

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 65

S1. The selected Caregiver can handle the emergency:

a. The Edge System sends credentials of the responding Caregiver to
the SmartLock of the frontdoor of the Resident’s house.

b. The Smart Lock updates the access credentials with the ones from
the responding Caregiver.

S2. The selected Caregiver can’t handle the emergency:

a. The Caregiver provides additional context information based on
his/her voice call conducted with the Resident.

b. The Analyze Behavior scenario is invoked to recompute a prioritized
of Caregivers and subsequently re-invoke this "Call For Help" sce-
nario updated list.

Alternate/Exception flows:

A1. (step 2): The selected Caregiver decides to decline the call:

a. The Edge System will select the next Caregiver from the prioritized
list and send an emergency signal to him/her.

b. The flow continues at step 2 for new Caregiver.

A2. (step 2) The selected Caregiver accepts the call, but a voice connection
with the Resident is not needed before heading over there:

a. The flow continues at Sub-flow S1.

E2. (step 3) The Caregiver and the Resident agree this is a false alert and no
further action follows.

Input data: List of credentials for Smart Lock

Prioritized additional list of Caregivers and po-
tential Caregivers’ contexts.

Output data: Updated list of credentials for the Smart Lock
system.

Potentially additional context information
about the Resident.

Infrastructure: Smart Lock Connected to Edge System with Internet
access, Caregivers Wearable with internet access.

Table 6.1: Use Case Scenario 1 Description, WP21 ALCCS

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 66

6.3 Structural View

In this section we will apply and verify the stereotypes of our ThingMLsec onto two types of
structural models (Deployment and Class diagrams) provided by [Brandsma, 2017] (remodeled
using Papyrus). Furthermore we shall go through the verification of the various constraints
that are applied together with different stereotypes.

6.3.1 Deployment Diagram

The improved deployment diagram and proposed solution for ALCCS depicted in Fig. 6.2 from
[Brandsma, 2017, p. 16], shows the model contained within a package diagram stereotyped
«secure links». To formulate and enforce the various security requirements, assumptions
and policies, the communication links of Internet, encrypted, LAN, secure BLE and secure 5G,
along with the dependencies of secrecy, integrity, call and send are used to connect the various
nodes and artifacts contained within the nodes. We previously mentioned the stereotypes that
are used especially for deployment diagrams, and can be summarized as shown in Fig. 6.1.
In detail, the diagram in Fig. 6.2 consists of nine nodes; Elderly Wearable, Web Server,
Cloud Server, Smart Phone, Access Point/Router, Sensor Gateway, Sensors, Wireless Data
Aggregator (WDA) and Smart Lock. These nodes are provided by the high level architectural
description and view by [Brandsma, 2017] for ALCCS. The various nodes communicate via
the five assorted connections; Internet, LAN, secure 5G, secure BLE and encrypted.

Figure 6.1: Stereotypes for Deployment Diagrams

Application

The idea is that the Assisted Living and Community Care System (ALCCS) should preserve
the confidentiality and integrity of the data (i.e. the lists of authorized users, caregivers and
elderly users, the location(s), sensor data etc.), that is being transmitted between the differing

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 67

nodes and components/artifacts contained within the nodes. Therefore the corresponding
dependencies stereotypes «secrecy», and «integrity» are included, and for usage, both the
«call» and «send» stereotypes are also included.

The «call» dependency, utilized twice in the entire diagram, is first included between the
communication between the Elderly Wearable and the Web Server nodes, where we assume
that the call from the wearable invokes the operation of "Call for Help" depicted in the use
case scenario on Fig. 6.1 on page 65. The other «call» dependency included in the deployment
diagram is between the Smart Phone (Caregiver) and the Elderly Wearable (specifically the
Audio Module artifact) over 5G cellular network in order to invoke the operation of communi-
cating with the elderly. The other dependency type that is used – the «send» dependency is
most used in the diagram, for example between the communication of Smart Lock and WDA,
Sensors and Sensor Gateway etc., in order to specify the nature of the communication be-
tween the various nodes. This stereotype and specific dependency type is used to specify that
the communication, where one node sends messages containing signals/data that the specific
target receives. In other words, the «send» dependency is used in the diagram to express and
depict the bidirectional nature of the communication.

Verification

At this point, we have labeled and applied the various stereotypes onto the specific model
elements contained within the diagram to enforce the security requirements, and the diagram
itself stereotyped «secure links». The next step is to verify the stereotypes that constrain
the structural design in our diagram against the defaultIoT adversary that we modified and
defined in Fig. 3.5 on page 33. Furthermore, given the constraints defined by [Jürjens, 2005]
and listed as conditions (4.4), (4.5) and (4.6) on page 43, we can conclude to the following:

s0(«high») =) threatsALCCS
defaultIoT (links) = ;

s1(«secrecy») =) read /2 threatsALCCS
defaultIoT (links)

s2(«integrity») =) insert /2 threatsALCCS
defaultIoT (links)

where:
links 2 {Internet, encrypted, LAN, secureBLE, secure5G}

The links essentially denote the various stereotypes on the communication links of contained
in our development diagram. The constraints are not violated because they fulfill the afore-
mentioned constrains for the «secure links» stereotype. More specifically, because all the
communication links (i.e. Internet, LAN, encrypted etc.) between the various nodes provide

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 68

the needed security levels according to the ThreatsdefaultIoT (links) scenarios, thus ensur-
ing the security requirements on communication dependencies are supported by the physical
situation.

6.3.2 Class Diagram

The improved class diagram and proposed solution for ALCCS depicted in Fig. 6.3 by [Brandsma,
2017, p. 17] shows the model contained within a package diagram stereotyped «secure dependency».
The stereotypes connected to class diagrams for enforcing security are depicted in Fig. 6.4.
The diagram consisting of a total of 16 objects (classes, subclasses, interface etc.), some stereo-
typed with «critical», and the relationships between the classes stereotyped with «call»,
«high», «secrecy» and «integrity». Some of the notable classes and objects include the
Wireless Data Aggregator (WDA), WSAN Gateway, Decision Engine, Interface, SAC Objects,
Actuator, Sensor etc.

Figure 6.4: Stereotypes for Class Diagrams

Application

For the dependencies between classes and objects, we have chosen to label the relationships
using the dependency type of call. This is not necessarily the dependency type to be strictly
used for class diagrams, since we could equally have achieved the same effect with the send
or the more general use dependency. The incentive behind the use of the «call» dependency
is that the classes/objects making use of the connected classes/objects are making "calls"
to make use of their services (i.e. methods), and therefore to invoke a specific operation or
behavior, and hence the call stereotype.

In regards to the class diagram of the ALCCS, we also decide that the system should preserve
the confidentiality, integrity and protection (to ensure secure information flow) to the data

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 69

(i.e. resources, protocols, roles etc.) on the messages (i.e. the methods of manageDevices,
notfiyCaregivers, commision etc.) Consequently, in order to label objects or classes containing
data that is critical, we use the «critical» stereotype. Thereafter we use the corresponding
tags to further specify in detail the security properties using {secrecy}, {integrity} and
{high}.

Verification

Given the class diagram for ALCCS, we can state that the diagram has no interfaces connected
with the stereotyped objects or classes (i.e. «critical»), thus invoking the exception rule for
the «secure dependency» constraints explained in Eq. 4.7 on page 45. Since we have at this
point labeled and applied the various stereotypes onto the model elements constrained within
the ALCCS class digram, we now aim to verify the validity and integrity of the model with
regards to the «secure dependency» constraints.

The provided specification and model in Fig. 6.3, does not violate the «secure dependency»

because any two connected objects/subsystems (e.g. classes of SAC Objects and WDA, WSAN
Gateway and SAC Objects, WDA and Interface etc.) within the model altogether respect the
security requirements on the data that is communicated across them.

More precisely, we can say that the model fulfills the requirements specified by the constraints.
Primarily for any two given classes/objects; e.g. SAC Objects and WDA, the security level
for the resources data expressed specifically by the {integrity} and the {secrecy} tags is
met by both objects. To express this in a different way, we can say that the resources in
SAC Objects whose confidentiality and integrity is supposed to be protected, by the tags
{integrity} and {secrecy}, are also guaranteed to be of the same security level and equally
protected by the WDA object. We also see that for the SAC Objects class, in addition we wish
to ensure the confidentially of the location data, hence the {secrecy} tag, and protect the
message of communicate with respect to secure information flow. For the second constraint,
which focuses on the dependencies between objects and subsystems, we can see how both
dependencies are stereotyped with the respective tags «secrecy», «high», «integrity» and
the usage dependency of «call». therefore we can ensure that for any message that is exists in
the tags of {secrecy}, {integrity} etc. in the SAC Objects, the dependencies are stereotyped
respectively with the «secrecy», «integrity» etc. Finally, by fulfilling these two constraints,
the validity and integrity of the model is ensured with respect to the «secure dependency»

constraints for the given stereotype.

We can observe this same pattern applied for any other connected objects within our model.
For instance, the same applies for the WDA and Interface, where within the Interface, we
wish to ensure the confidentiality and integrity of the data that is location and resources,

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 70

and therefore the {secrecy} and {integrity}. Thereby we ensure that the security level is
maintained for all connected classes and objects. The same applies for the dependencies on
the two classes.

6.4 Behavioral View

In this subsection we further apply and verify the stereotypes of our ThingMLsec onto two
other types of behavior models (Use Case and Activity diagrams) also provided by [Brandsma,
2017] (remodeled using Papyrus).

6.4.1 Use Case Diagram

The use case specification and system architecture of ALCCS by [Brandsma, 2017, p. 22]
specifies four distinct use case scenarios for the system. The specific use cases depicted in
Fig. 6.2 represent the various functionalities of the described environment [Brandsma, 2017,
p. 22]. The four use cases are call for help, analyze resident behavior, enter area and update
resident location. The specific use case and use case scenario that we will further look into
is call for help. This means that we shall explore this specific description of the functionality
from a different type of view – the activity view.

Figure 6.1: Stereotypes for Use Case Diagrams

Application

For this use case diagrams, there is a very limited number of stereotypes that can be applied
to enforce security, as depicted by the Fig. 6.1. This is mostly to the uncomplicated, that
comes with expressing logical behavior without revealing the internal structure of the subject
[Rumbaugh et al., 2010]. The slightly modified use case diagram of ALCCS therefore shows
the model contained within a package diagram stereotyped «fair exchange». This specific
stereotype used in use case diagrams represents the security requirement that any transaction
should be performed in a way that prevents both parties from cheating. It is worth noting
that [Jürjens, 2005] states that the stereotype applied to this diagram type hold an informal

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 71

meaning. He further explains how the stereotype mostly serves as an example of how security
requirements – as stereotypes – can be used in other diagrams types.

Verification

However with regards to the applied stereotype of «fair exchange», we wish to express that
"cheating" in any form – mostly related to the service provider or context Reasoning System –
can have fatal consequences. For instance if the system or service provider in any way neglects
to respond to the "call for help" from the elderly user, the consequences can be fatal. Finally
there is little to be verified in terms of this stereotype due to the informality of the security
requirement, and the lack of specific constraints related to its use.

Figure 6.2: ThingMLsec Use Case Diagram of ALCCS

6.4.2 Activity Diagram

The use case specification and system architecture of ALCCS includes an Activity diagram
of the "Call for Help" scenario depicted in Fig.6.2 and descriptively in Table 6.1 on page 65,
from [Brandsma, 2017, p. 25]. The activity diagram in 6.5, in contrast to all the previous
remodeled diagrams of ALCCS contains no ThingMLsec stereotypes. Due to limitations of
the Papyrus tool and specifically lack of the Package or Model elements that are required to
label security policies onto activity diagrams defined by our ThingMLsec. This is addressed
and discussed in more detail in Chapter 7. Therefore to be able to apply the stereotypes that
we needed to specify the security requirements for the activity diagram, we included a Model
diagram that separately represents the unlabeled Activity diagram in Fig. 6.5 and applied to
our the stereotype and associated tags there instead. This is the model depicted in Fig. 6.4.

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 72

Figure 6.3: Stereotypes for Activity Diagrams

The improved and proposed solution for therefore for the activity diagram of ALCCS shows the
model stereotyped «rbac». It is worth noting that the we could have used other stereotypes
or a combination of several stereotypes shown in Fig. 6.3. The «rbac» expresses the security
policy of access control and specifically Role-Based Access Control (RBAC). Firstly, from the
activity diagram we can see the activities for the "Call for Help" scenario. The diagram is
partitioned into five partitions; Resident, Residents Wearable, Edge System and Caregiver.

Figure 6.4: ThingMLsec stereotyped Activity Diagram for ALCCS

Application

For the Activity of "Call for Help", we wish to ensure and enforce role-base access control in
order to express that only legitimate parties have access to the security-relevant or protected
resources of the system. With RBAC we want to specifically make the permissions to the
Edge System manageable, since we assume that this is a large system with many different
users (tech. support, system administrators, supervisors etc.). So instead of users, we have
roles that relate to their function within, and we assign the permissions to those roles.

With regards to the diagram, and specifically the partition of the Edge System, we assume

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 73

there are several actors that are responsible for and perform the various activities within that
particular swimlane. The corresponding tags for the «rbac» are {protected}, {role} and
{right}.

Firstly we assume that the protected resources within the diagram are: (1) "Retrieve priori-
tized list of Caregivers", (2) "Update list of credentials" and (3) "Send list of credentials to
Smart Lock". All these activities are contained within the swimlane of Edge System. Hence
the {protected} expressed as following:

{protected = "Retrieving prioritized list of Caregivers", "Update list of

credentials", "Send list of credentials to Smart Lock" }

Furthermore, we assume that the Edge System has particularly a Technical Support respond-
ing to the call for help from the Elderly. He/she essentially deals with the lower-level and less
important day-to-day activities. This is provided that this particular activity is not performed
automatically. The other user of the Edge System is assumed to be the System Administrator
with a more high-level responsibility and essentially deals with the more complex activities of
the system. In other words, central to the "Call for Help" scenario and the Edge System, we
have at assumed least two roles (1) Technical Support and (2) System Administrator. Note
that the naming and accuracy of these two roles is insignificant, and merely provide details
for the demonstration of applying the «rbac». Therefore we can assume that we have the
following {role} tag:

{role = (Edge System, Technical Support), (Edge System, System Administrator)}

Lastly, we assume that the roles have specific rights to the protected resources. For the role
of Technical Support, we assume that he/she should have the right to "Retrieve prioritized
list of Caregivers" in this specific scenario, and the System Administrator should be able to
"Update list of credentials" and "Send list of credentials to Smart Lock" within the same
scenario. The corresponding {right} tag expresses this in the following manner:

{right = (Technical Support, Retrieve prioritized list of Caregivers), (System

Administrator, Update list of credentials), (System Administrator, Send list

of credentials to Smart Lock)}

These assumptions therefore describe the tagged values depicted in Fig. 6.4 with the «rbac»

stereotype. Depending on the intention of the user, one can freely specify the protected
resources and roles, but they should respect the associated constraint that we shall explain
below.

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 74

Verification

Given the «rbac» stereotyped activity digram, we established the constraint for the stereotype
during Chapter 4 under the well-formedness rules. The constraint essentially requires that the
actors in the activity diagram only perform activities which they have appropriate rights.

In our model, we can observe the protected resources of "Retrieving prioritized list of Care-
givers", "Update list of credentials" and "Send list of credentials to Smart Lock". The Edge
System, using the roles of Technical Support and System Administrator respectively have the
appropriate permissions to. Therefore we can conclude that the diagram is correctly labeled,
and that the constraint for «rbac» is not violated.

Lastly, it is important to mention that we could visualize the role-based access control within
the activity diagram much better by separating the Edge Systems partition into two (at least)
swimlanes for the aforementioned actors, in order to clearly visualize the separated activities
and protected resources based on the actors that actually are responsible for performing those
specific activities. We mention this, because currently the protected resources are all contained
in one partition of Edge System, while their permissions are most likely performed by different
actors within the Edge System and that are not visualized within the diagram. This is merely
a suggestion, and that has not taken into account the reasons that the project and system
architects of SCOTT had in mind while specifying these models.

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 75

Fi
gu

re
6.

2:
T

hi
ng

M
Ls

ec
D

ep
lo

ym
en

t
D

ia
gr

am
of

A
LC

C
S

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 76

Fi
gu

re
6.

3:
T

hi
ng

M
Ls

ec
C

la
ss

D
ia

gr
am

of
A

LC
C

S

www.manaraa.com

CHAPTER 6. THE APPLICATION OF THINGMLSEC TO ALCCS 77

Fi
gu

re
6.

5:
A

ct
iv

ity
D

ia
gr

am
of

A
LC

C
S’

s
"C

al
lf

or
H

el
p"

Sc
en

ar
io

www.manaraa.com

Part V

Discussion

78

www.manaraa.com

CHAPTER 7
Conclusion

7.1 Summary

During this thesis we first identified the security challenges we are currently facing with the
emergence of Internet of Things (IoT). Furthermore, we discussed the impact from various
attacks to IoT – from individual (i.e. Smart Homes) to eventually global (i.e. Smart Cities)
repercussions. We therefore introduced a measure to ensure IoT security enforcement in the
preliminary stage of the software development life cycle. We introduced the UMLsec approach
by [Jürjens, 2005] for secure systems development for specifically handling security at the
specification and UML design level. UMLsec, which is essentially a UML profile extension,
offers security requirements (i.e. secrecy, integrity, freshness, access control) as specification
elements to further evaluate diagrams to indicate possible vulnerabilities.

The extension is typically given in the form of a profile, using the UML extension mecha-
nisms of stereotype, tags/tagged values and constraints. However, we adopted UMLsec as the
foundation for our own "ThingMLsec" profile, specifically using the security requirements and
extending those with additional, domain-specific concepts related to IoT applications (i.e. 5G,
BLE, actuators etc.). During the application of our profile, we employed our ThingMLsec pro-
file to enforce established rules of secure systems design. Then we demonstrated how to apply
security patterns to the use case of Assisted Living and Community Care System (ALCCS) by
the project Secure COnnected Trustable Things (SCOTT). The construction and application
of the profile was done using the open-source and Eclipse-based modeling tool of Papyrus.

We also demonstrated how UMLsec and Papyrus can be used to model security requirements,
threat scenarios and other security related concepts on all levels of the system architecture (i.e.
logical, physical level etc.), in order to encapsulate and enforce rules on prudent Model-Based
Security Engineering (MBSE). This was especially vital because it allowed to specify security
to the most essential aspects and views of a complete system. At least from an architectural

79

www.manaraa.com

CHAPTER 7. CONCLUSION 80

Figure 7.1: Activity Diagram Palette in Papyrus

point.

In extending UMLsec, specifically by adding more concepts (i.e. 5G, BLE, actuators) and
modifying (i.e. removing specific non-relevant stereotypes like POS device), we also demon-
strated the expressiveness of the approach. This was a very important feature of the approach,
since it meant that we could further adopt and extend the approach to any domain-specific
approach. We shall now discuss and evaluate the quality of our work and contributions.

7.2 Limitations

7.2.1 Restricted Palette Customization

Our initial goal was to be able to apply the profile and UMLsec security requirements on all
UML2 models. This was also taken into consideration when we defined the ThingMLsec, by
extending the security policies (i.e. stereotypes to be applied on entire diagrams) to extend
the metaclasses of both package and model, just in case the model element of package was
not available. In other words, if we could not apply the stereotype «secure links» onto a
deployment diagram contained within a package diagram, we could have the option to apply
the deployment diagram to a model instead (which is supported by most modeling tools).
Thereby assuring that our profile was applicable to most diagrams and using various tools
that support UML profiling.

www.manaraa.com

CHAPTER 7. CONCLUSION 81

One important issue that arose during the application of the Papyrus tool is that certain types
of diagrams (e.g. activity diagrams, composite diagrams) cannot be contained in packages.
This makes applying stereotypes onto models, subsystems and packages impossible. There
is however a workaround to this issue, which evolves in either making a stereotype of the
model itself to the ThingMLsec profile, or making other other changes to the profile itself.
This is a major drawback because the main advantage of UML profiling (in this case for
ThingMLsec) is that we have defined a language that is optimally suited to a specific problem
– security in IoT systems development. However the failure to apply the profile onto all
diagram types, allows for inconsistent use of the approach which in turn limits the application
of the approach for the entirety of the system. This is something we can call a fragmentation
issue; whereby the different modeling languages – general purpose (ie. UML2) and domain-
specific (i.e. ThingMLsec) – are applied on different view and areas (i.e. fragments) of the
system specification.

We tried out several remedies to fix this issue. The first and most notable one was refinement.
Refinement, in the sense that we specifically tried to tailor the profile and the associated
stereotypes to extend the metaclasses corresponding and applicable model elements. Specifi-
cally for activity diagrams, to be able to apply the stereotypes of either «provable», «fair
exchange» or «rbac», we changed the extension from model and package to the metaclass
of activity. This was in hope to solve the specific issue that the model element of package
was not available as part of the palette depicted in Fig. 7.1. Therefore since every activity
diagram in Papyrus is contained within the base class of Activity, this seemed to be a feasible
solution for this problem. However the profile could not in any capacity be applied to the
diagram, making the solution impractical.

Figure 7.2: A snippet of the .uml file

The other notable remedy we tried to fix this issue, was trying to bypass the act of selecting
model elements from the palette. We tried to achieve this is by editing and modifying the
.uml file itself depicted in 7.2. This file contains the tree structure expressing the "child"
and "sibling" relation between all model elements within the diagram. With child, we mean
the subnode for a given node (i.e. model element), and sibling are the nodes on the same

www.manaraa.com

CHAPTER 7. CONCLUSION 82

hierarchal level. In this file, we have the capacity to modify any model element available in
UML, to either be a child or a sibling of any other model element(s). Therefore as a remedy
to apply our profile as-is, we contained the entire activity diagram (i.e. model element of
activity) to be the child of the model element of package. This could be done successfully –
at least within the .uml file. However for reasons unknown the diagram itself would still not
allow for applying the ThingMLsec profile, thus making also this solution impractical.

Finally, apart from the aforementioned attempts, we tried to use many "hacky" or poor
solutions, that also did not work, so we eventually concluded that the lack of customization
to the palette and contained model elements, restricts us from fully applying our profile and
therefore our restricting our solution. A temporary remedy that we chose for our activity
diagram, was to provide an additional model diagram, for which we applied the stereotypes
that where meant to be labeled directly onto the activity diagram. The «rbac» stereotyped
model could therefore reference the activity diagram, but the relation was purely textual. This
is the best way we managed to choose, especially to prevent the fragmentation issues to our
solution in overall.

7.2.2 Lack of OCL Constraints

Our initial goal was for our profile to in some capacity contain OCL constraints. For the
security policies, containing constraints that have to be fulfilled by the diagram to carry the
given stereotype (i.e. «secure links», «data security», «secure dependency» etc.), we
wanted to embed these into our ThingMLsec profile to allow for automatic validation of the
diagrams, to determine whether or not they violate the constraints of the applied stereotype.
Specifically because of the rather complex nature of these constraints, we wished to embed
the constraints in a plugin. Thereon we could have wished to use the available functionality to
group the constraints for the given stereotypes (eg. «fair exchange» with associated {start}
and {stop}) grouped together, and included into the validation for only the relevant diagrams
(i.e. activity diagram).

However as previously mentioned, we did not achieve this due to lack of time, and to the
fact most of the available time went to understanding and using the Papyrus tool itself.
Specifically trying to make the profile applicable to all diagrams within Papyrus, was the
most time-consuming, since theoretically speaking, the notable attempts should have worked.
Therefore this lead to spending most of the time spent to figure out exactly why these solutions
did not work as they presumably should. However with more time, we strongly believe this
could have been implemented because of the various documentation and guideline that where
available on OCL in general and OCL constraints within Papyrus.

www.manaraa.com

CHAPTER 7. CONCLUSION 83

7.3 Discussion

During the problem formulation in the introduction of the thesis, we established a set of
questions we wanted the to provide answers for, and were as follows:

(i.) In terms of usability, how is the UMLsec approach?

(ii.) Is the UMLsec approach applicable to a real-world use case (i.e. SCOTT’s Use Case of
Assisted Living Community Care System)?

(iii.) Can the UMLsec approach be combined with the code generation framework of ThingML
to facilitate Model-Driven Secure Software Engineering?

7.3.1 Usability

In terms of usability, we can firstly define usability simply as the ease of use. We understand
that this term is used in many fields and areas, but the definition we chose is the "bottom-up"
and product-oriented defined by [Bevan, 2009]. Usability is described as synonymous with
quality. Therefore in this context we shall address the UMLsec approach as intended from
our initial goal, but we shall compare and discuss in parallel to our profile and context (i.e.
Papyrus tool and validation extension) that extends UMLsec. This is ThingMLsec. Quality
is measured by the effectiveness, efficiency and satisfaction to which the user can achieve
particular goals [Bevan, 1995]. Consequently, we shall attempt to examine the aspects of the
UMLsec approach and our profile to determine in what capacity the measurement fulfilled.

Initially, the "Usability of security specification approaches for UML design: A survey" by
[Talhi et al., 2009] discussed the usability of UMLsec approach along with other related ap-
proaches, by isolating the criteria into four. However in our case we shall focus on only three
of the following:

A. Expressiveness: describes the ability to specify the security requirements.

B. Tool support : describes the availability of tools for specification of the security require-
ments.

C. Verifiability : describes the efforts needed to verify the design against the security re-
quirements.

For each of the usability criteria, we shall now further examine how our approach, method
and the context are in terms of usability or quality.

www.manaraa.com

CHAPTER 7. CONCLUSION 84

Expressiveness

To determine and evaluate the (A.) expressiveness of UMLsec and our approach, we can isolate
distinguish between the following:

A1. Specify the static security requirements.

A2. Specify the dynamic security requirements.

A3. Specify the logical security requirements.

In terms of UMLsec, using the UML extension mechanisms to specify the security require-
ments is the most common approach within the field. [Talhi et al., 2009] also concluded that
this is one of the most expressive approach to specifying security requirements at the design
level. With UMLsec and approaches that use the UML extension mechanisms, we are able to
specify and enforce both static and dynamic security requirements. We can also specify both
logic classes (Linear Temporal Logic (LTL) and Binary Temporal Logic (BTL)) of security
requirements, particularly the security policies (i.e. «secure links», «no down-flow» etc.).

Another important fact regarding the expressiveness of the approach, is that the since the
artifacts or extension mechanisms are provided by UML, this makes the approach usable and
accessible. This also adds to the portability, in the sense that the approach can be exported
or "plugged in" to or from other frameworks and tools since most of them also support UML
profiling.

In regards to our approach, profile and context, ThingMLsec we can say that since we essen-
tially use the same artifacts and security concepts (i.e. with minor additions and modifica-
tions), the complete expressiveness of UMLsec also applies to ThingMLsec.

Lastly, some might argue that some of the stereotypes (independently) do not have have
very formal constraints or conditions-of-use. The consequences of this may be that too much
expressiveness can lead to misinterpretations and therefore weakened verifiability (e.g. «fair
exchange»).

Tool Support

To determine the tool support for UMLsec, and specifically for the context which we adopted
the approach – Papyrus Modeling Tool – we can distinguish between the following:

B1. Specification of the artifacts.

B2. Compile/store the specified artifacts (for verification/code generation).

www.manaraa.com

CHAPTER 7. CONCLUSION 85

Initially, the tool support for UMLsec is excellent since the extension mechanisms and profiling
are provided by UML, meaning that most tools are capable of using the UMLsec approach.
And also in this case, since our ThingMLsec approach uses the same artifacts, we essentially
adopt the same opportunities as UMLsec in terms of tool support.

However looking at the evaluation requirements for evaluating tool support, and in terms of
our approach and tool used, we did not full fulfill this requirement. Because despite managing
to specify all the artifacts or model elements for almost all diagrams that we intended (i.e.
Class, Use Case and Deployment) we still failed to use Papyrus to specify the security re-
quirements (stereotypes) for the Activity diagram. The UMLsec approach allows us to specify
requirements for all UML2 diagrams, but limitations and restriction of the tool prevented us
from doing so.

For the last verification requirement, the tool had the capability to store and compile the mod-
els and model elements, allowing to either generate code or verify or validate using extensions
or plugins within Eclipse.

Verifiability

Lastly, in terms of usability, we can determine the criteria of verifiability by distinguishing
between the following:

C1. Formally specifying security requirements

C2. Verifying the design against the security requirements.

C3. Interpreting and representing the results.

Firstly, by using Papyrus (specifically the validation extension) to embed the OCL constraints
into the profile or as a plugin we are capable to (1) formally specify the security requirements,
(2) verify our design against those security requirements and (3) interpret and represent the
results.

Therefore the tool used allowed us to verify and validate the models, but during our imple-
mentation we did not manage to take full advantage of this feature with embedding the OCL
constraints for the security requirements into a plugin as we hoped for from the start. This
was due to the time constraint, and consequently a limitation to our approach.

7.3.2 Applicability

Our initial goal was to use apply UMLsec to ALCCS, and we actually managed to apply the
profile to an actual real-word use case as intended. It is important to note that we now focus
on the applicability of the approach itself, regardless of the toolset and its limitations.

www.manaraa.com

CHAPTER 7. CONCLUSION 86

The ability is to apply the approach of UMLsec and also our ThingMLsec was firstly evident
in terms of how extendable the approach was. To successfully apply UMLsec to the use case
of Assisted Living, we needed to extend the expressiveness of the approach by adding security
concepts related to the domain of IoT, including the concepts already provided by UMLsec.
This turned out to be achievable since we added the communication links of 5G and BLE
with the purpose to address the communication presented for the Assisted Living Use Case
specification but also IoT in general.

Amongst other contributions, we also managed to modify the threat model for IoT adding
the aforementioned concepts, and thus making the approach further applicable to our use
case. Not only could we add new concepts, but reduce the complexity of our own approach
by leaving out or excluding the concepts that we felt were irrelevant to the use case provided.

The other notable feature about UMLsec that bears evidence to the applicability of the ap-
proach, is the expressiveness. As previously mentioned, the UML extension mechanisms pro-
vided allowed us to specify everything from statically, dynamically and logically enforceable
security requirements. Therefore we were able to internally (within the use case) apply these
security requirements to all diagrams provided by the UML2 standard.

Lastly we can conclude that the applicability of the UMLsec approach in general and the
ThingMLsec approach is one of the most rewarding aspects of using this method for security
specification. The extendable nature of UMLsec to add more domain specific concepts allowed
for external applicability, while the expressiveness provided by wide variety of the security
requirements provided by the stereotypes allowed for better security modeling and internal
applicability.

7.3.3 Integration

In this subsection, we address integration or the ability to combine ThingMLsec with other
approaches, and specifically the Domain Specific Modeling Language (DMSL) of ThingML in
particular. Firstly we have established that the usability of UMLsec and ThingMLsec depends
very much on the provided and chosen toolset and tool support. Therefore we shall address
the integration possibilities related to our approach and context, i.e. integration possibilities
of the Papyrus modeling tool.

Papyrus is, as previously mentioned an Eclipse-based UML2 modeling tool. In terms of inte-
gration [Yang and Jiang, 2007] describes it as "the most powerful tool-integration platform".
Elicpse IDE is a platform for plugging in tools so they can interact and integrate seamlessly

www.manaraa.com

CHAPTER 7. CONCLUSION 87

with each other, and is also open source. It does this through a set of framework and com-
mon resources that are described as "integrationware". With Eclipse the idea is to make sure
developers do not need to switch between tools to work, and better support life-cycle develop-
ment. So frameworks (e.g. ThingML) can leverage Eclipse plugins in order to enable model
validation for example.

Fundamentally Eclipse is a framework for plugins, and as a platform it offers predefined
extension mechanisms for plugins to add functionality [Yang and Jiang, 2007]. Its plugin ar-
chitecture provides a flexible, open and scalable, tool-integration solution. The open platform
lets you customize or extend components, and even lets you create, plug-in an appropriate
perspective that is internally available within Eclipse, in order to tailor your needs. Suppose
you create a plugin in your workspace, you can also easily deploy it using the export wizard.
In conclusion, Eclipse IDE is rich with features that reduce the amount of coding (i.e. work)
needed to develop plug-ins.

Based on the powerful, scalable and extendable environment that Papyrus is based in – Eclipse
– we can conclude that the ability to combine our ThingMLsec approach with other ap-
proaches, tools or methods is highly possible. And specifically the features, tools and toolsets
provided by Eclipse are the reasons behind this.

7.4 Final Conclusions

In terms of what the reader can make out of the entire process within undertaken in this
paper, we have made a few notable conclusions.

Firstly, the various views and associated models of UML express different modeling constructs
for the general purpose language and more importantly represent different aspects of a com-
plete system. Therefore by applying the stereotypes to specifically the four different diagram
types and views as we did, we ensured the enforcement of security on multiple aspects (i.e.
physical level, static, behavioral etc.) of the system. This was in turn very advantageous for
specifying as many security requirements as possible. More detailed we can say we achieved
the following:

• Capture Security Requirements w/ Use Case Diagram: by encapsulating the diagram
within the «fair exchange», we manage to capture the security requirement related to
the specific situation, and the activities that are associated with use case diagrams.

• Enforce Role-Based Access Control in Business Processes w/ Activity Diagrams: by
encapsulating the diagram with «rbac» and associated tags, we managed to enforce

www.manaraa.com

CHAPTER 7. CONCLUSION 88

role-based access control as a security policy to manage permissions over the protected
resources by assigning them to roles instead of users.

• Enforce Physical Security w/ Deployment Diagrams: by encapsulating the diagram with
«secure links» and other stereotypes and tags, we managed to enforce the security
requirements on between various components where supported by the physical situation,
relative to our modified and domain-specific adversary model.

• Ensure Secure Data Communication w/ Class Diagrams: by encapsulating the diagram
with «secure dependency» and other stereotypes and tags, we managed to ensure that
the security on the different parts of the static structure diagram were consistent.

UMLsec adopted with the Papyrus tool is a highly expressive, effective and applicable ap-
proach, that enables system engineers, developers and designers to specify and automatically
verify security requirements for any domain-specific area. Whether it is for the Internet of
Things or any other domain. However we still think that with increased adoption of the ap-
proach amongst users, hopefully the modeling tools will become better tailored specifically for
UMLsec.

In terms of the applicability of UMLsec to a specific real-world use case, we could easily see
the the security concepts could add security relevant information on many aspects of a systems
specification. From enforcing the various static, behavioral and even logical constraint of our
diagram and models, we showed how effective the approach can be to specifying and enforcing
security requirements. The expressiveness of the approach further enforces the applicability,
by enabling users to extend the security concepts with additional concepts related to the
specific domain.

In terms of tools, on the other hand, it might benefit most users to actually spend some money
on a professional and powerful UML modeling tool (e.g. MagicDraw) to get the most out of
UMLsec and/or ThingMLsec, or even other domain-specific extensions of UMLsec. We think
this might make it easier to adopt and apply the approach. However for those who require an
open-source and free modeling tool, Papyrus is still one of the best options, through we might
suggest spending time on properly learning the tool itself, in order to get the best out of the
features, and to avoid the problems we faced during this process.

The effort and procedure of specifying and enforcing security requirements using UMLsec at
the design and specification level within the software development life cycle is a very useful.
Also [Talhi et al., 2009] even concludes that the actual efforts of verifying against the security
requirements is very important one, regardless of the selected approach. It shows just how

www.manaraa.com

CHAPTER 7. CONCLUSION 89

much the value that these methods actually add to developing more secure systems, even
through the "how" you do so, is not so important. Finally, we can conclude that UMLsec is
a highly usable, expressive, extendable, applicable and well supported approach that makes
developing secure systems even easier and better.

www.manaraa.com

CHAPTER 8
Future Work

To further enrich and build upon what we have discovered, there are many different ways to
approach this. During this last chapter we shall discuss such enhancement methods.

8.1 Model-Driven Security Development with ThingML

Previously in Chapter 1, we introduced the Domain Specific Modeling Language (DMSL) of
ThingML as an approach to Model-Driven Software Engineering (MDSE), to where developers
use models to implement a system, and the models are used to generate code. We will now look
at how we can enhance upon the work we have done in this thesis to integrate ThingMLsec
and UMLsec with ThingML in order to validate models before code generation.

First of all, ThingML being a model-based approach means that specifically the behavior of
components is structured in a state machine [Fleurey, 2016]. The code generation is performed
by the support of UML2 models. The state machines in ThingML are aligned with UML2
statecharts and includes composite states, regions and history states.

If the models within the ThingML toolset, state machines are to be specified and enforced
with regards to security, then the UMLsec approach can be used for this purpose. Specifically
we can use stereotypes, tags, UML constraints or even OCL constraints to handle security
related issues regarding model driven software engineering with ThingML. This can be done
for example if we are to ensure secure information flow to a given state machine diagram.
Then the UMLsec can allow for using specifically the «no down-flow» and «no up-flow».
These particular security polices allow us to specify and protect the different data based on
it sensitivity (i.e. either high or low level). Therefore, as previously mentioned, we can use
verification tools, e.g. a model checker, theorem prover or even specifically the Papyrus Domain
Specific Modeling Language (DMSL) Validation extension for Papyrus, to check whether the
design satisfies or violates the given security policy.

90

www.manaraa.com

CHAPTER 8. FUTURE WORK 91

ThingML is available as plug-ins for Eclipse IDE, and since Eclipse fundamentally is a frame-
work for plugins that allows to easily create, extend and deploy, we are able to plugins to
integrate the ThingML framework with our ThingMLsec profile as plugins [Yang and Jiang,
2007]. One specific way to do this is to embed our OCL constraints into a plugin as we in-
tended, and thereafter deploy this plugin using the export wizard. This plugin can therefore
be used within the workspace of ThingML to enable model validation for the UML2 state
machines with respect to the constraints of UMLsec.

8.2 Privacy and the Internet of Things

We have throughout this thesis mentioned how the nature of IoT technologies can affect the
security and privacy of the associated stakeholders and even devices themselves. Although we
have mostly focused on the security-related aspect of this, we can now look into how privacy
can fit into this. Firstly, with privacy we mean the concealment of personal information as
well as the ability to control what happens to this information [Weber, 2010]. Regarding the
devices and objects collecting various data within IoT, we wish to avoid tracking or following
individuals without their knowledge and/or their data being carelessly handled like e.g. being
left out – in any capacity – in cyberspace. [Weber, 2010] defines the Client privacy as one
of three requirements with regards to security and privacy in business processes. The other
two are "Resilience to attacks" and "Data authentication". Client privacy is defined as the
measure needed to be handled, in such a way that the only the information provider is capable
of gathering information from observing the use of the system related to a specific customer.
The process of gathering information should also be hard to conduct.

8.2.1 Privacy Enhancing Technologies

The paper further states that the privacy requirements are difficult to fulfill. There are how-
ever some technologies, namely Privacy Enhancing Technologiess (PETs) that have been im-
plemented and are capable of achieving the privacy requirement goals. Some of the mentioned
technologies include the following:

• Virtual Private Networks (VPNs): can ensure confidentiality and integrity to closed
groups of business partners. However this solution is restricts the dynamic information
exchange on a global scale.

• Transport Layer Security (TLS): can ensure confidentiality and integrity based on a
global trust structure, but the connection can be negatively affected by the required
additional layers.

www.manaraa.com

CHAPTER 8. FUTURE WORK 92

• Onion Routing : encrypts and mixes the Internet traffic from various sources, whereby
the data is wrapped into multiple encryption layers ("onions"). However this can result
in performance issues.

The paper mentions also the Private Information Retrieval (PIR) systems, and even phys-
ical mechanisms like "Faraday Cage" and other ways for disabling, disconnecting devices.
Nonetheless with the use case of Assisted Living and the type of users (i.e. Elderly users),
some of the proposed solutions do not seem fitting for the provided use case context.

In terms of UMLsec and ThingMLsec, the security assumptions and specifically the (e.g.)
«encrypted» communication link suggests using VPN to achieve an encrypted connection,
and thus demonstrating how the current security concepts already support for use of PETs.

8.2.2 Privacy Laws and Regulations

We have talked about PET, but users have traditionally received help in protecting their inter-
ests and privacy through various regulations [Mittelstadt, 2017]. more specifically the health
data and associated devices, have faced legal rules constraining the collection and processing.
In EU e.g., health data has been specially treated, mostly by categorizing this data type as
a "special category of personal data" and thereby requiring far more stern restrictions. How-
ever, despite the regulations, new challenges have risen in terms of data collection, specifically
regarding data that is strictly not health data, but "health-related".

Very recently, as of this month – May 2018, we have seen the Europe’s General Data Protection
Regulation (GDPR) finally coming to effect, whereby an important new change is the definition
of "data concerning health" which is a special category of personal data. The General Data
Protection Regulation (GDPR) Article 4(15) defines this definition as "personal data related
to the physical or mental health of a natural person, which can reveal information about his
or her health status". With this definition, we now see that data that is does not directly
describe health, but from which we can draw health related information now falls within the
scope. This means such data (i.e. "health-related"), will be subject to further restrictions and
protection since it falls under the special category of personal data.

In the use case of Assisted Living we can conclude that the GDPR, will affect the data
collected by the sensors that is directly and indirectly related to the elderly user’s medical
condition as it falls under the special category of personal data. However it is important
to note that the regulations alone are not sufficient to ensure privacy of the user or clients
personal information, and we must also incorporate design choices that affect how users use
IoT systems in a trustworthy and respectful ways towards their rights and interests.

www.manaraa.com

CHAPTER 8. FUTURE WORK 93

[Mittelstadt, 2017] proposes nine ethical guidelines and principles based on well-established
concepts for designing H-IoT or Health-related Internet of Things (IoT). The principles cover
everything from collecting minimal data, establishing trust and confidentiality between users
and providers, to ensure transparent and accountable data collecting and processing protocols.

8.2.3 Privacy Enforcing Stereotypes

[Talhi et al., 2009] states that UMLsec lacks in expressiveness since the security properties
are predefined using UML extension mechanisms, and cannot be used to specify user-defined
properties. From how we implemented the approach, we disagree with this statement. How-
ever from defining our own security profile (i.e. the specific Papyrus tool, UML profiling
etc.) – ThingMLsec profile, we used the stereotypes defined by UMLsec (i.e. fair exchange,
rbac, provable etc.), but we also demonstrated that we could add more of our own security
assumptions (e.g. 5G, BLE) and security requirements, and security policies to that profile.

Although our profile consisted mostly of the security properties of UMLsec, we have demon-
strated the ability to extend the security properties for a more domain-specific appliance.
Therefore we know that we can expand the vocabulary of the DMSL to address, privacy by
adding relevant stereotypes, tags and constraints.

One the ethical principles [Mittelstadt, 2017] suggests, is ensuring that the data processing
protocols are transparent. Therefore as an example of how we can adopt this principle is
to introduce a stereotype «transparency» that allows us to enforce transparency and trust
during the specification and design level within the software development level. We can either
determine this stereotype to add static, dynamic or logical constraint(s), depending on how
much we wish to restrict or enforce the use of this privacy requirement. An example of a
security and privacy requirement for this stereotype can be to label static structure diagrams,
either with a {transparent} tag or the stereotype alone to express that the collected sensor
data should be transparent so that the patient or user is aware of all the data that is collected
– health-related or not. As we can see, there are countless possibilities to this approach.

www.manaraa.com

Bibliography

[Best et al., 2007] Best, B., Jurjens, J., and Nuseibeh, B. (2007). Model-Based Security En-
gineering of Distributed Information Systems Using UMLsec. In 29th International Con-
ference on Software Engineering (ICSE’07), pages 581–590. IEEE.

[Bevan, 1995] Bevan, N. (1995). Usability As Quality of Use. Software Quality Journal,
130:115–116.

[Bevan, 2009] Bevan, N. (2009). LNCS 5619 - Extending Quality in Use to Provide a Frame-
work for Usability Measurement. LNCS, 5619:13–22.

[Brandsma, 2017] Brandsma, E. (2017). Use Case Specification and System Architecture for
Assisted Living.

[Cabot and Gogolla, 2012] Cabot, J. and Gogolla, M. (2012). Object Constraint Language.
A definitive guide. School on Formal Methods, pages 1–59.

[Ericsson and Letavernier, 2018] Ericsson, R. B. and Letavernier, C. (2018). Pa-
pyrus/UserGuide/Profile Constraints - Eclipsepedia.

[Fleurey, 2016] Fleurey, F. (2016). ThingML: A Domain Specific language for Cyber Physical
Systems / Internet of Things.

[Gérard, 2011] Gérard, S. (2011). Papyrus User Guide Series: About UML profiling, version
1.0.0. Technical Report 1.0.0.

[Harrand et al., 2016] Harrand, N., Fleurey, F., Morin, B., and Husa, K. E. (2016). ThingML:
a language and code generation framework for heterogeneous targets. Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Languages and
Systems - MODELS ’16, pages 125–135.

[Jürjens, 2002] Jürjens, J. (2002). UMLsec: Extending UML for Secure Systems Development.
pages 412–425.

[Jürjens, 2005] Jürjens, J. (2005). Secure Systems Development with UML. Springer-Verlag,
Berlin/Heidelberg.

94

www.manaraa.com

BIBLIOGRAPHY 95

[Militano et al., 2015] Militano, L., Araniti, G., Condoluci, M., Farris, I., and Iera, A. (2015).
Device-to-Device Communications for 5G Internet of Things. EAI Endorsed Transactions
on Internet of Things, 1(1):150598.

[Mittelstadt, 2017] Mittelstadt, B. (2017). Designing the health-related internet of things:
Ethical principles and guidelines. Information (Switzerland), 8(3):77.

[Nishadha, 2012] Nishadha, N. (2012). UML Diagram Types With Examples for Each Type
of UML Diagrams.

[Padgette et al., 2017] Padgette, J., Bahr, J., Batra, M., Holtmann, M., Smithbey, R., Chen,
L., and Scarfone, K. (2017). Guide to bluetooth security. Technical report.

[Ponemon Institute LLC, 2017] Ponemon Institute LLC (2017). 2017 Study on Mobile and
Internet of Things Application Security. Ponemon Institute, (January):30.

[Prehofer and Chiarabini, 2015] Prehofer, C. and Chiarabini, L. (2015). From Internet of
Things Mashups to Model-Based Development. In 2015 IEEE 39th Annual Computer Soft-
ware and Applications Conference, pages 499–504. IEEE.

[Rumbaugh et al., 2010] Rumbaugh, J., Jacobson, I., and Booch, G. (2010). The Unified
Modeling Language Reference Manual. Addison-Wesley.

[Safdar et al., 2015] Safdar, S. A., Iqbal, M. Z., and Khan, M. U. (2015). Empirical evalua-
tion of uml modeling tools–a controlled experiment. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 9153, pages 33–44.

[Talhi et al., 2009] Talhi, C., Mouheb, D., Lima, V., Debbabi, M., Wang, L., and Pourzandi,
M. (2009). Usability of security specification approaches for UML design: A survey. Journal
of Object Technology, 8(6):1–20.

[Tehrani et al., 2014] Tehrani, M., Uysal, M., and Yanikomeroglu, H. (2014). Device-to-device
communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE
Communications Magazine, 52(5):86–92.

[Tiwary et al., 2018] Tiwary, A., Mahato, M., and Chandrol, M. K. (2018). Internet of Things
(IoT): Research, Architectures and Applications. International Journal on Future Revolu-
tion in Computer Science & Communication Engineering, ISSN(4):2454–4248.

[Weber, 2010] Weber, R. H. (2010). Internet of Things – New security and privacy challenges.
Computer Law & Security Review, 26(1):23–30.

[Yang and Jiang, 2007] Yang, Z. and Jiang, M. (2007). Using eclipse as a tool-integration
platform for software development. IEEE Software, 24(2):87–89.

www.manaraa.com

BIBLIOGRAPHY 96

[Yue et al., 2013] Yue, J., Ma, C., Yu, H., and Zhou, W. (2013). Secrecy-based access control
for device-to-device communication underlaying cellular networks. IEEE Communications
Letters, 17(11):2068–2071.

	List of Figures
	List of Tables
	List of Acronyms
	I Introduction
	Introduction
	Motivation
	Problem Formulation
	Contributions
	The Internet of Things
	Device-to-Device Communication for Internet of Things
	Use Case Application of Internet of Things
	Why the Use Case of Assisted Living?
	The Goal
	Developing for Internet of Things

	Model-Driven Software Engineering
	UML
	ThingML

	Model-Based Security Engineering
	UMLsec

	Related Approaches
	Alternatives

	Outline

	II Background
	ThingML
	Structure of ThingML
	Thing(s)
	Configurations

	UMLsec
	Security Engineering
	UML Extension Mechanisms
	UMLsec Stereotypes

	Security Analysis & Adversary Model
	5G Security
	BLE Security
	Conclusion

	III Design
	UML Profile Extension
	Background
	UML Profiling

	Well-formedness Rules of UMLsec
	Base Class
	Stereotypes, Tags & Constraints

	Conclusion
	Diagrams & Model Elements

	UMLsec Profile Construction
	Tool Support
	Papyrus
	Alternatives
	Conclusion

	ThingMLsec Profile
	OCL

	IV Application
	The Application of ThingMLsec to ALCCS
	Proof of Concept
	Use Case Description
	Emergency Handling

	Structural View
	Deployment Diagram
	Class Diagram

	Behavioral View
	Use Case Diagram
	Activity Diagram

	V Discussion
	Conclusion
	Summary
	Limitations
	Restricted Palette Customization
	Lack of OCL Constraints

	Discussion
	Usability
	Applicability
	Integration

	Final Conclusions

	Future Work
	Model-Driven Security Development with ThingML
	Privacy and the Internet of Things
	Privacy Enhancing Technologies
	Privacy Laws and Regulations
	Privacy Enforcing Stereotypes

	Bibliography

